18,981 research outputs found
Delays in Biological Regulatory Networks
International audienceIn this article, we propose a refinement of the modeling of genetic regulatory networks based on the approach of René Thomas. The notion of delays of activation/inhibition are added in order to specify which variable is faster affected by a change of its regulators. The formalism of linear hybrid automata is well suited to allow such refinement. We then use HyTech for two purposes: (1) to find automatically all paths from a specified initial state to another one and (2) to synthesize co nstraints on the delay parameters in order to follow any specific path
Photodissociative Regulation of Star Formation in Metal-Free Pregalactic Clouds
We study the H2 photodissociation regions around OB stars in primordial gas
clouds whose virial temperatures are between a few hundred and a few thousand
Kelvin. In such small objects, a single O star can photodissociate a mass equal
to that of the cloud itself. As a result, the clouds deplete their molecular
coolant and cannot cool in a free-fall time, and subsequent star formation is
totally quenched. This indicates that stars do not form efficiently in small
objects and that these objects contribute little to the reionization of the
universe.Comment: 9 pages. ApJ, 518, in pres
Dynamical Expansion of Ionization and Dissociation Front around a Massive Star. II. On the Generality of Triggered Star Formation
We analyze the dynamical expansion of the HII region, photodissociation
region, and the swept-up shell, solving the UV- and FUV-radiative transfer, the
thermal and chemical processes in the time-dependent hydrodynamics code.
Following our previous paper, we investigate the time evolutions with various
ambient number densities and central stars. Our calculations show that basic
evolution is qualitatively similar among our models with different parameters.
The molecular gas is finally accumulated in the shell, and the gravitational
fragmentation of the shell is generally expected. The quantitative differences
among models are well understood with analytic scaling relations. The detailed
physical and chemical structure of the shell is mainly determined by the
incident FUV flux and the column density of the shell, which also follow the
scaling relations. The time of shell-fragmentation, and the mass of the
gathered molecular gas are sensitive tothe ambient number density. In the case
of the lower number density, the shell-fragmentation occurs over a longer
timescale, and the accumulated molecular gas is more massive. The variations
with different central stars are more moderate. The time of the
shell-fragmentation differs by a factor of several with the various stars of
M_* = 12-101 M_sun. According to our numerical results, we conclude that the
expanding HII region should be an efficient trigger for star formation in
molecular clouds if the mass of the ambient molecular material is large enough.Comment: 49 pages, including 17 figures ; Accepted for publication in Ap
Towards a fully self-consistent spectral function of the nucleon in nuclear matter
We present a calculation of nuclear matter which goes beyond the usual
quasi-particle approximation in that it includes part of the off-shell
dependence of the self-energy in the self-consistent solution of the
single-particle spectrum. The spectral function is separated in contributions
for energies above and below the chemical potential. For holes we approximate
the spectral function for energies below the chemical potential by a
-function at the quasi-particle peak and retain the standard form for
energies above the chemical potential. For particles a similar procedure is
followed. The approximated spectral function is consistently used at all levels
of the calculation. Results for a model calculation are presented, the main
conclusion is that although several observables are affected by the inclusion
of the continuum contributions the physical consistency of the model does not
improve with the improved self-consistency of the solution method. This in
contrast to expectations based on the crucial role of self-consistency in the
proofs of conservation laws.Comment: 26 pages Revtex with 4 figures, submitted to Phys. Rev.
Blood clearance and tissue distribution of PEGylated and non-PEGylated gold nanorods after intravenous administration in rats\ud
Aims: To develop and determine the safety of gold nanorods, whose aspect ratios can be tuned to obtain plasmon peaks between 650 and 850 nm, as contrast enhancing agents for diagnostic and therapeutic applications. Materials & methods: In this study we compared the blood clearance and tissue distribution of cetyl trimethyl ammonium bromide (CTAB)-capped and polyethylene glycol (PEG)-coated gold nanorods after intravenous injection in the tail vein of rats. The gold content in blood and various organs was measured quantitatively with inductively coupled plasma mass spectrometry. Results & discussion: The CTAB-capped gold nanorods were almost immediately (<15 min) cleared from the blood circulation whereas the PEGylation of gold nanorods resulted in a prolonged blood circulation with a half-life time of 19 h and more wide spread tissue distribution. While for the CTAB-capped gold nanorods the tissue distribution was limited to liver, spleen and lung, the PEGylated gold nanorods also distributed to kidney, heart, thymus, brain and testes. PEGylation of the gold nanorods resulted in the spleen being the organ with the highest exposure, whereas for the non-PEGylated CTAB-capped gold nanorods the liver was the organ with the highest exposure, per gram of organ. Conclusion: The PEGylation of gold nanorods resulted in a prolongation of the blood clearance and the highest organ exposure in the spleen. In view of the time frame (up to 48 h) of the observed presence in blood circulation, PEGylated gold nanorods can be considered to be promising candidates for therapeutic and diagnostic imaging purpose
A new lab facility for measuring bidirectional reflectance/emittance distribution functions of soils and canopies
Recently, a laboratory measurement facility has been realized for assessing the anisotropic reflectance and emittance behaviour of soils, leaves and small canopies under controlled illumination conditions. The facility consists of an ASD FieldSpec 3 spectroradiometer covering the spectral range from 350 â 2500 nm at 1 nm spectral sampling interval. The spectroradiometer is deployed using a fiber optic cable with either a 1°, 8° or 25° instantaneous field of view (IFOV). These measurements can be used to assess the plant pigment (chlorophyll, xanthophyll, etc.) and non-pigment system (water, cellulose, lignin, nitrogen, etc.). The thermal emittance is measured using a NEC TH9100 Infrared Thermal Imager. It operates in a single band covering the spectral range from 8 â 14 mm with a resolution of 0.02 K. Images are 320 (H) by 240 (V) pixels with an IFOV of 1.2 mrad. A 1000 W Quartz Tungsten Halogen (QTH) lamp is used as illumination source, approximating the radiance distribution of the sun. This one is put at a fixed position during a measurement session. Multi-angular measurements are achieved by using a robotic positioning system allowing to perform either reflectance or emittance measurements over almost a complete hemisphere. The hemisphere can be sampled continuously between 0° and 80° from nadir and up to a few degrees from the hot-spot configuration (depending on the IFOV of the measurement device) for a backscattering target. Measurement distance to targets can be varied between 0.25 and 1 m, although with a distance of more than 0.6 m it is not possible to cover the full hemisphere. The goal is to infer the BRDF (bidirectional reflectance distribution function) and BTDF (bidirectional thermal distribution function) from these multi-angular measurements for various surface types (like soils, agricultural crops, small tree canopies and artificial objects) and surface roughness. The steering of the robotic arm and the reading of the spectroradiometer and the thermal camera are all fully automated
Domestic Market Power in the International Airline Industry
We posit and empirically test the hypothesis that airlines are able to charge a fare premium in markets that originate in their domestic country relative to similar markets that originate in foreign countries. To this end, we focus on intercontinental one-stop air travel trips for which the main, intercontinental, flight legs are identical, while the feeder legs depart from a mixture of domestic- and foreign origins. We collect a unique database of published fares for such trips and estimate reduced form fare regressions with main flight leg fixed effects. We find that trips from and to domestic airports (compared with foreign airports) are characterized by about 9.5 per cent higher fares, even after adding controls for airport dominance, trip operating costs, the competitive environment and origin catchment area characteristics. These findings demonstrate that airlines have substantial domestic market power, enabling them to raise fares at their domestic airports irrespective of aforementioned market conditions. The magnitude of this domestic country effect is large relative to the traditional airport dominance effect, suggesting that the distinction between domestic- and foreign origins is a crucial determinant of the degree of market power that airlines can exert in the international airline industry
- âŠ