2,056 research outputs found

    Landau level spectroscopy of ultrathin graphite layers

    Full text link
    Far infrared transmission experiments are performed on ultrathin epitaxial graphite samples in a magnetic field. The observed cyclotron resonance-like and electron-positron-like transitions are in excellent agreement with the expectations of a single-particle model of Dirac fermions in graphene, with an effective velocity of c* = 1.03 x 10^6 m/s.Comment: 4 pages 4 figures Slight revisions following referees' comments. One figure modifie

    In situ imaging of field emission from individual carbon nanotubes and their structural damage

    Get PDF
    ©2002 American Institute of Physics. The electronic version of this article is the complete one and can be found online at: http://link.aip.org/link/?APPLAB/80/856/1DOI:10.1063/1.1446994Field emission of individual carbon nanotubes was observed by in situ transmission electron microscopy. A fluctuation in emission current was due to a variation in distance between the nanotube tip and the counter electrode owing to a "head-shaking" effect of the nanotube during field emission. Strong field-induced structural damage of a nanotube occurs in two ways: a piece-by-piece and segment-by-segment pilling process of the graphitic layers, and a concentrical layer-by-layer stripping process. The former is believed owing to a strong electrostatic force, and the latter is likely due to heating produced by emission current that flowed through the most outer graphitic layers

    HIFs, angiogenesis, and metabolism:elusive enemies in breast cancer

    Get PDF
    Hypoxia-inducible factors (HIFs) and the HIF-dependent cancer hallmarks angiogenesis and metabolic rewiring are well-established drivers of breast cancer aggressiveness, therapy resistance, and poor prognosis. Targeting of HIF and its downstream targets in angiogenesis and metabolism has been unsuccessful so far in the breast cancer clinical setting, with major unresolved challenges residing in target selection, development of robust biomarkers for response prediction, and understanding and harnessing of escape mechanisms. This Review discusses the pathophysiological role of HIFs, angiogenesis, and metabolism in breast cancer and the challenges of targeting these features in patients with breast cancer. Rational therapeutic combinations, especially with immunotherapy and endocrine therapy, seem most promising in the clinical exploitation of the intricate interplay of HIFs, angiogenesis, and metabolism in breast cancer cells and the tumor microenvironment

    Plasmon assisted transport through disordered array of quantum wires

    Full text link
    Phononless plasmon assisted thermally activated transport through a long disordered array of finite length quantum wires is investigated analytically. Generically strong electron plasmon interaction in quantum wires results in a qualitative change of the temperature dependence of thermally activated resistance in comparison to phonon assisted transport. At high temperatures, the thermally activated resistance is determined by the Luttinger liquid interaction parameter of the wires.Comment: 7 pages, 1 figure, final version as publishe

    Multi-shell gold nanowires under compression

    Full text link
    Deformation properties of multi-wall gold nanowires under compressive loading are studied. Nanowires are simulated using a realistic many-body potential. Simulations start from cylindrical fcc(111) structures at T=0 K. After annealing cycles axial compression is applied on multi-shell nanowires for a number of radii and lengths at T=300 K. Several types of deformation are found, such as large buckling distortions and progressive crushing. Compressed nanowires are found to recover their initial lengths and radii even after severe structural deformations. However, in contrast to carbon nanotubes irreversible local atomic rearrangements occur even under small compressions.Comment: 1 gif figure, 5 ps figure

    Sitting time and health outcomes among Mexican origin adults: obesity as a mediator

    Get PDF
    Background: Sitting time and sedentary behaviors have been associated with adverse health outcomes including obesity, diabetes and cardiovascular disease (CVD) within non- Hispanic White populations. Similar associations have not been described within Hispanic populations despite their high CVD risk profile. This study aimed to assess the association between sitting time and obesity, self-reported diagnosed diabetes, hypertension and high cholesterol among a large cohort (N=11,268) of Mexican origin adults and to assess whether obesity mediated these associations. Methods: Using a cross-sectional design, data collected between 2004 and 2010 were analyzed in late 2010. Regression analyses evaluated associations between self-reported daily sitting hours and disease outcomes, controlling for demographics, employment status, family disease history, and light, moderate and strenuous physical activity. Results: Participants were mostly female (81.1%) Mexican origin adults. Sitting time was associated with increased odds of being obese, having diabetes and having hypertension, but not high cholesterol. Adjusted odds ratios of participants who reported sitting > 4 hours/day compared to those sitting 1-2 hours/day were for obesity OR=1.55 (95% CI 1.39, 1.73), p<.001, for diabetes OR=1.29 (95% CI, 1.09, 1.52), p=.003, for hypertension OR=1.17 (95% CI, 1.01, 1.37), p=.041. Associations controlled for physical activity and employment status. Effects on hypertension and diabetes were mediated by obesity. Conclusions: Sitting time was significantly associated with detrimental health outcomes, independent of physical activity. Obesity mediated these relationships for diabetes and hypertension. Future research should assess whether interventions addressing sitting time are feasible and effective among Mexican origin populations

    Magnetoplasmons in quasi-neutral epitaxial graphene nanoribbons

    Full text link
    We present infrared transmission spectroscopy study of the inter-Landau-level excitations in quasi-neutral epitaxial graphene nanoribbon arrays. We observed a substantial deviation in energy of the L0(1)L_{0(-1)}\toL1(0)L_{1(0)} transition from the characteristic square root magnetic-field dependence of two-dimensional graphene. This deviation arises from the formation of upper-hybrid mode between the Landau level transition and the plasmon resonance. In the quantum regime the hybrid mode exhibits a distinct dispersion relation, markedly different from that expected for conventional two-dimensional systems and highly doped graphene

    High-Energy Limit of Massless Dirac Fermions in Multilayer Graphene using Magneto-Optical Transmission Spectroscopy

    Full text link
    We have investigated the absorption spectrum of multilayer graphene in high magnetic fields. The low energy part of the spectrum of electrons in graphene is well described by the relativistic Dirac equation with a linear dispersion relation. However, at higher energies (>500 meV) a deviation from the ideal behavior of Dirac particles is observed. At an energy of 1.25 eV, the deviation from linearity is 40 meV. This result is in good agreement with the theoretical model, which includes trigonal warping of the Fermi surface and higher-order band corrections. Polarization-resolved measurements show no observable electron-hole asymmetry.Comment: 4 pages,3 figure
    corecore