403 research outputs found

    Comparison of two Borg exertion scales for monitoring exercise intensity in able-bodied participants, and those with paraplegia and tetraplegia

    Get PDF
    Study design Cross-sectional cohort study. Objectives To compare ratings of perceived exertion (RPE) on Borg's 6-20 RPE scale and Category Ratio 10 (CR10) in able-bodied (AB) participants during upper and lower body exercise, and recreationally active participants with paraplegia (PARA) and athletes with tetraplegia (TETRA) during upper body exercise only. Setting University and rehabilitation centre-based laboratories in UK and Netherlands. Methods Twenty-four participants were equally split between AB, PARA, and TETRA. AB performed maximal tests using cycle (AB-CYC) and handcycle (AB-HC) ergometry. PARA and TETRA performed maximal handcycle and wheelchair propulsion tests, respectively. Oxygen uptake (V?O-2) and blood lactate concentration were monitored throughout. RPE was rated each stage on Borg's RPE scale and CR10. Thresholds were identified according to log-V?O-2 plotted against log-blood lactate (LT1), and 1.5 mmol L-1 greater than LT1 (LT2). Results RPE from both scales were best fit against each other using a quadratic model, with high goodness of fit between scales that was independent of exercise mode and participant group (range R-2: 0.965-0.970, P < 0.005). Though percentage peak V?O-2 was significantly greater in TETRA (P < 0.005), there was no difference in RPE at LT1 or LT2 between groups on Borg's RPE scale or CR10. Conclusion Strong association between Borg's RPE scale and CR10 suggests they can be used interchangeably. RPE at lactate thresholds were independent of mode of exercise and level of spinal cord injury. However, inter-individual variation precludes from making firm recommendations about using RPE for prescribing homogenous exercise intensity

    Criterion Validity of a Field-Based Assessment of Aerobic Capacity in Wheelchair Rugby Athletes

    Get PDF
    Purpose: To confirm whether peak aerobic capacity determined during laboratory testing could be replicated during an on-court field-based test in wheelchair rugby (WR) players. Methods: Sixteen WR players performed an incremental speed-based peak oxygen uptake (V̇O2peak) test on a motorised treadmill (TM) and completed a Multi-stage Fitness Test (MFT) on a basketball court in a counter-balanced order while spirometric data were recorded. A paired t-test was performed to check for systematic error between tests. A Bland-Altman plot for V̇O2peak illustrated the agreement between the TM and MFT results and how this related to the boundaries of practical equivalence. Results: No significant differences between mean V̇O2peak were reported (TM:1.85±0.63 vs. MFT: 1.81±0.63 L.min-1; p=0.33). Bland-Altman plot for V̇O2peak suggests that the mean values are in good agreement at the group level; i.e., the exact 95% confidence limits for the ratio systematic error (0.95 to 1.02) are within the boundaries of practical equivalence (0.88 to 1.13) showing the group average TM and MFT values are interchangeable. However, consideration of the data at the level of the individual athlete suggests the TM and MFT results were not interchangeable because the 95% ratio limits of agreement either coincide with the boundaries of practical equivalence (upper limit) or fall outside (lower limit). Conclusions: Results suggest that the MFT provides a suitable test at a group level with this cohort of WR players for the assessment of V̇O2peak (range 0.97 – 3.64 L∙min-1), yet caution is noted for interchangeable use of values between tests for individual players

    The Effect of External Power Output and Its Reliability on Propulsion Technique Variables in Wheelchair Users With Spinal Cord Injury

    Get PDF
    The purpose of this study was to assess 1) how treadmill slope variance affected external power output (PO) and propulsion technique reliability; and 2) how PO is associated with propulsion technique. Eighteen individuals with spinal cord injury performed two wheelchair treadmill exercise blocks (0% and 1% treadmill slope, standardized velocity) twice on two separate days. PO, velocity, and 14 propulsion technique variables were measured. In a follow-up study, N = 29 performed wheelchair treadmill drag tests. Target and actual slope were documented and PO, intraclass correlation coefficients (ICC) and smallest detectable differences (SDD) were calculated. Within and between visits, the reliability study ICCs were perfect for velocity (1.0), weak for PO (0.33-0.46), and acceptable (>0.70) for five (0% slope) and 10 (1% slope) propulsion technique variables, resulting in SDDs of 35-196%. Measured PO explained 56-90% of the variance in key propulsion technique variables. In the follow-up, PO ICCs were weak (0.43) and SDDs high. Bias between target and actual slope appeared random. In conclusion, PO variability accounts for 50-90% of the variability in propulsion technique variables when speed and wheelchair set-up are held constant. Therefore, small differences in PO between interventions could mask the effect of the interventions on propulsion technique

    Evaluation of a standardized test protocol to measure wheelchair-specific anaerobic and aerobic exercise capacity in healthy novices on an instrumented roller ergometer

    Get PDF
    This study aims to evaluate whether a test protocol with standardized and individualized resistance settings leads to valid wheelchair Wingate tests (WAnT) and graded exercise tests (GXT) in healthy novices. Twenty able-bodied individuals (10M/10F, age 23 ± 2 years, body mass 72 ± 11 kg) performed an isometric strength test, sprint test, WAnT and GXT on a wheelchair ergometer. Using a previously developed set of regression equations, individuals' isometric strength outcome was used to estimate the WAnT result (P30est), from which an effective individual WAnT resistance was derived. The subsequently measured WAnT outcome (P30meas) was used to estimate the GXT outcome (POpeakest) and to scale the individual GXT resistance steps. Estimated and measured outcomes were compared. The WAnT protocol was considered valid when maximal velocity did not exceed 3 m·s-1; the GXT protocol was considered valid when test duration was 8-12 min. P30est did not significantly differ from P30meas, while one participant did not have a valid WanT, as maximal velocity exceeded 3 m·s-1. POpeakest was 10% higher than POpeakmeas, and six participants did not reach a valid GXT: five participants had a test duration under 8 min and one participant over 12 min. The isometric strength test can be used to individually scale the WAnT protocol. The WAnT outcome scaled the protocol for the GXT less accurately, resulting in mostly shorter-than-desired test durations. In conclusion, the evaluated standardized and individualized test protocol was valid for the WAnT but less valid for the GXT among a group of novices. Before implementing the standardized individual test protocol on a broader scale, e.g. among paralympic athletes, it should be evaluated among different athletic wheelchair-dependent populations

    Body weight-supported gait training for restoration of walking in people with an incomplete spinal cord injury:A systematic review

    Get PDF
    Objective: To evaluate the effect of body weight-supported gait training on restoration of walking, activities of daily living, and quality of life in persons with an incomplete spinal cord injury by a systematic review of the literature. Methods: Cochrane, MEDLINE, EM BASE, CINAHL, PEDro, DocOnline were searched and identified studies were assessed for eligibility and methodological quality and described regarding population, training protocol, and effects on walking ability, activities of daily living and quality of life. A descriptive and quantitative synthesis was conducted. Results: Eighteen articles (17 studies) were included. Two randomized controlled trials showed that subjects with injuries of less than one year duration reached higher scores on the locomotor item of the Functional Independence Measure (range 1-7) in the over-ground training group compared with the body weight-supported treadmill training group. Only for persons with an American Spinal Injury Association Impairment Scale C or D was the mean difference significant, with 0.80 (95% confidence interval 0.04-1.56). No differences were found regarding walking velocity, activities of daily living or quality of life. Conclusion: Subjects with subacute motor incomplete spinal cord injury reached a higher level of independent walking after over-ground training, compared with body weight-supported treadmill training. More randomized controlled trials are needed to clarify the effectiveness of body weight-supported gait training on walking, activities of daily living, and quality of life for subgroups of persons with an incomplete spinal cord injury

    Natural Gas Compressibility Factor Measurement and Evaluation for High Pressure High Temperature Gas Reservoirs

    Get PDF
    The Natural gas compressibility factor is an important reservoir fluid property used in reservoir engineering computations either directly or indirectly in material balance calculations, well test analysis, gas reserve estimates, gas flow in lines and in numerical reservoir simulations. Existing gas compressibility factor correlations were derived using measured data at low to moderate pressures(less than 8, 000 psia) and temperatures (less than 212oF), and an extrapolation to High Pressure High temperature (HPHT) is doubtful. The need to understand and predict gas compressibility factor at HPHT has become increasingly important as exploration and production has moved to ever deeper formations where HPHT conditions are to be encountered. This paper presents laboratory measurement of gas compressibility factors at HPHT natural gas systems and the evaluation of some selected gas compressibility factors correlations. Samples of gas mixtures were collected from the high pressure gas reservoirs from the Niger Delta region of Nigeria. Vinci PVT Cell was used to measure the gas compressibility factors for a pressures ranging from 6,000 to 14,000 psia and temperatures at 270oF and 370oF. The new laboratory data was compared to some of the gas compressibility factor correlations/ models used in the petroleum industry. Results showed that majority of the correlations studied overestimated the gas compressibility factor at HPHT. Mean relative and absolute error analysis were done based on the temperature difference; it was found that the total mean relative and absolute errors for the 370o F cases are higher than those for 270oF. Among all the correlations assessed, Hall and Yarborough equation performed better than other existing correlations with a mean absolute error of 3.545 and relative error of -2.668 at 270oF. At 370oF, Beggs and Brills correlation predicted better than other correlations studied with a mean relative error of -4.77 and absolute error of 7.18
    • …
    corecore