56 research outputs found

    Alternative Magnesium Sulfate Dosing Regimens for Women With Preeclampsia: A Population Pharmacokinetic Exposure-Response Modeling and Simulation Study

    Get PDF
    Magnesium sulfate is the anticonvulsant of choice for eclampsia prophylaxis and treatment; however, the recommended dosing regimens are costly and cumbersome and can be administered only by skilled health professionals. The objectives of this study were to develop a robust exposure-response model for the relationship between serum magnesium exposure and eclampsia using data from large studies of women with preeclampsia who received magnesium sulfate, and to predict eclampsia probabilities for standard and alternative (shorter treatment duration and/or fewer intramuscular injections) regimens. Exposure-response modeling and simulation were applied to existing data. A total of 10 280 women with preeclampsia who received magnesium sulfate or placebo were evaluated. An existing population pharmacokinetic model was used to estimate individual serum magnesium exposure. Logistic regression was applied to quantify the serum magnesium area under the curve-eclampsia rate relationship. Our exposure-response model-estimated eclampsia rates were comparable to observed rates. Several alternative regimens predicted magnesium peak concentration < 3.5 mmol/L (empiric safety threshold) and eclampsia rate ≤ 0.7% (observed response threshold), including 4 g intravenously plus 10 g intramuscularly followed by either 8 g intramuscularly every 6 hours × 3 doses or 10 g intramuscularly every 8 hours × 2 doses and 10 g intramuscularly every 8 hours × 3 doses. Several alternative magnesium sulfate regimens with comparable model-predicted efficacy and safety were identified that merit evaluation in confirmatory clinical trials

    Multisciplinary management of patients with liver metastasis from colorectal cancer

    Get PDF
    Colorectal cancer (CRC) is one of the leading causes of cancer-related death. Surgery, radiotherapy and chemotherapy have been till now the main therapeutic strategies for disease control and improvement of the overall survival. Twenty-five per cent (25%) of CRC patients have clinically detectable liver metastases at the initial diagnosis and approximately 50% develop liver metastases during their disease course. Twentythirty per cent (20%-30%) are CRC patients with metastases confined to the liver. Some years ago various studies showed a curative potential for liver metastases resection. For this reason some authors proposed the conversion of unresectable liver metastases to resectable to achieve cure. Since those results were published, a lot of regimens have been studied for resectability potential. Better results could be obtained by the combination of chemotherapy with targeted drugs, such as anti-VEGF and anti-EGFR monoclonal antibodies. However an accurate selection for patients to treat with these regimens and to operate for liver metastases is mandatory to reduce the risk of complications. A multidisciplinary team approach represents the best way for a proper patient management. The team needs to include surgeons, oncologists, diagnostic and interventional radiologists with expertise in hepatobiliary disease, molecular pathologists, and clinical nurse specialists. This review summarizes the most important findings on surgery and systemic treatment of CRC-related liver metastases

    Reduced postischemic macrophage infiltration and interstitial fibrosis in osteopontin knockout mice

    Get PDF
    Reduced postischemic macrophage infiltration and interstitial fibrosis in osteopontin knockout mice.BackgroundOsteopontin (OPN) is a phosphoprotein that is up-regulated in several experimental models of renal disease, including ischemia/reperfusion injury. OPN has been described as a macrophage chemoattractant, may serve as a survival factor for tubular cells, and is implicated in the development of tubulointerstitial fibrosis. However, the precise role of this protein in renal pathophysiology remains unclear.MethodsOPN knockout and wild-type mice were subjected to 30 minutes of warm renal ischemia combined with a contralateral nephrectomy, and sacrificed at six different time points, ranging from 12 hours to seven days after reperfusion. Besides functional and morphological parameters of postischemic acute renal failure (ARF), macrophage infiltration, apoptosis and expression of collagen types I and IV were investigated.ResultsPostischemic ARF in OPN knockouts and wild-types showed a similar course and severity, without significant differences in either functional or morphological disease parameters. However, macrophage infiltration was significantly diminished in OPN knockouts after five and seven days, in cortex as well as in the outer stripe of the outer medulla (OSOM). Furthermore, OPN knockout mice showed significantly enhanced apoptosis in the injury phase and significantly less collagen I and IV expression in the regeneration phase of postischemic ARF.ConclusionsThere was no influence of OPN protein on the severity or course of functional impairment or morphological injury in the first seven days after an ischemic insult to the kidney. However, our results demonstrate that OPN favors macrophage recruitment to the postischemic kidney, inhibits apoptosis, and stimulates the development of renal fibrosis after an acute ischemic insult

    Differences in osteopontin up-regulation between proximal and distal tubules after renal ischemia/reperfusion

    Get PDF
    Differences in osteopontin up-regulation between proximal and distal tubules after renal ischemia/reperfusion.BackgroundOsteopontin (OPN) is a highly acidic phosphoprotein containing an arginine-glycine-aspartic acid (RGD) cell adhesion motif. High OPN expression has been found in tissues with high cell turnover, and OPN up-regulation has been demonstrated in several models of renal injury, suggesting a possible role in tissue remodeling and repair. However, its exact function in the kidney remains unknown. In this study, the possible contribution of OPN to regeneration and repair in the kidney was explored by studying the time course and subcellular localization of OPN up-regulation after renal ischemia/reperfusion injury in different nephron segments and by investigating its relationship with tubular morphology.MethodsRats that underwent 60 minutes of left renal ischemia and a right nephrectomy sacrificed at 10 different time points (from 1hr to 10 days after reperfusion) were compared with uninephrectomized rats at each time point. In renal tissue sections immunostained for OPN, proximal (PTs) and distal tubules (DTs) in both the renal cortex and outer stripe of the outer medulla (OSOM) were scored for the degree of OPN expression and tubular morphology.ResultsKidneys of uninephrectomized rats showed no injury, and the localization and intensity of their OPN expression remained unaltered compared with normal rats. After ischemia/reperfusion, morphological damage was most severe in PTs of the OSOM, but all examined nephron segments showed a significant increase in OPN expression. The time course of OPN up-regulation was different in PTs and DTs. DTs in both cortex and OSOM rapidly increased their OPN expression, with a maximum at 24 hours after reperfusion followed by a slow decrease. In contrast, PTs showed a delayed increase in OPN staining, with a maximum after five to seven days, higher in the OSOM than in the cortex. In OSOM PTs, OPN expression was predominantly associated with morphological regeneration, whereas DTs showed a substantial OPN up-regulation without major morphological damage. PTs and DTs displayed a different subcellular OPN staining pattern: OPN staining in DTs was located to the apical side of the cell; PTs, however, presented a vesicular, perinuclear staining pattern.ConclusionsOur study found a different pattern of OPN up-regulation after renal ischemia/reperfusion in PTs versus DTs, both with regard to time course and subcellular localization. DTs show an early and persistent increase in OPN staining in the absence of major morphological injury, whereas OPN staining in PTs is delayed and is mostly associated with morphological regeneration. PTs show a vesicular, perinuclear OPN staining pattern, whereas DTs show OPN staining at the apical cell side
    corecore