34 research outputs found

    The dark side of the Albano crater lake

    Get PDF
    The Albano Lake is the deepest volcanic lake among the volcanoes located in the Italian peninsula. It belongs to the Colli Albani volcanic complex whose last largest eruptions are dated back to about ~30 Kyr, although minor events likely occurred during historical times at 7000 yr B.P. or earlier. After the end of the volcanic activity the Crater of Albano became a lake whose level changes are known since historical times. On November 2005, was performed the first very high resolution bathymetric survey of the Albano lake by means of a multibeam echo sounder, integrated with the GPS/RTK positioning technique A particular effort was devoted to produce a high resolution morphobathimetric map, which aims to provide a Digital Terrain Model of the lake floor for wide applications. The surveys did not revealed significant gas exhalative centres, which should indicate a current active gas release from the lake floor. Here we show the technical details of the bathymetric surveys, the very high resolution bathymetric map and the main morphological features of the Albano Lake bottom

    The high resolution bathymetric map of the exhalative area of Panarea (Aeolian Islands, Italy)

    Get PDF
    On November 3, 2002 a shallow submarine gas eruption occurred in an area of 2.3 km2 east of Panarea (Aeolian volcanic arc, Southern Thyrrenian Sea, Italy). The exhalative area, surrounded by the islets of Dattilo, Panarelli, Lisca Bianca, Bottaro and Lisca Nera, has been known since historical times for the hydrothermal activity related to the Panarea volcanic complex. Due to the exceptional characteristics of the phenomenon, different geological, geochemical, geophysical and studies were carried out in this still poorly known volcanic area. A particular effort was devoted to producing a high resolution bathymetric map that also aimed to estimate the amount and location of the active exhalative centers and their variations in space and time. Data were obtained by three RTK multibeam surveys performed between December 2002 and December 2003. Here we show and discuss the technical details of the bathymetric surveys, the bathymetric map at 0.5 m resolution, and the accurate location of the 606 main exhalative centres active during the 2002-2003 crisis. The bathymetric data and the maps show two prevailing principal NE-SW and NW-SE alignments that match the spatial distribution of the exhalation centres. The accurate positioning at submeter accuracy of the gas vents is useful in the monitoring activity and to study their temporal and spatial variability

    Rhodolith beds heterogeneity along the apulian continental shelf (Mediterranean sea)

    Get PDF
    Rhodolith beds represent a key habitat worldwide, from tropical to polar ecosystems. Despite this habitat is considered a hotspot of biodiversity, providing a suite of ecosystem goods and services, still scarce quantitative information is available thus far about rhodolith beds occurrence and ecological role, especially in the Mediterranean Sea. This study reports the composition and patterns of distribution of rhodolith assemblages found in four study areas along ca. 860 km of coast in the Central Mediterranean Sea. These rhodolith beds were studied for the first time and significant differences at all spatial scales have been highlighted, documenting the high variability of this habitat. Rhodolith species composition, morphology and distribution have been discussed considering the potential role of environmental factors in driving these patterns. The need for improving their protection is discussed to complement present conservation and management initiatives, particularly in the frame of the EU Marine Strategy Framework Directive

    A potential beach monitoring based on integrated methods

    Get PDF
    This study focuses on the analysis of sandy beaches by integrating sedimentological, geomorphological, and geophysical investigations. The beach represents an extremely variable environment where different natural processes act simultaneously with human activities, leading to the gathering of different methodologies of the Earth Sciences to study its evolution in space and time. The aim of this research is to propose a potential procedure for monitoring the morpho-sedimentary processes of sandy beaches by analyzing the textural and compositional characteristics of the sands and quantifying the volumes involved in the coastal dynamics. The study area includes two Apulian sandy beaches (Torre Guaceto and Le Dune beach) that are representative of the coastal dynamics of a large sector of the central/northern Mediterranean Sea involving the southern Adriatic Sea and the northern Ionian Sea. Sedimentological and ecological investigations allowed to describe the textural and compositional characteristics of the beach sands by interpreting their sand provenance and the physical/biological interactions within the beach. The topographic surveys carried out with a Terrestrial Laser Scanner and an Optical Total Station, aimed to quantify the variations of sediment volume over time, whereas the Delft3d software was applied to analyze the effects of the dominant wave motion on the sedimentary dynamics. Lastly, the geophysical techniques which included Sub Bottom Profiler procedures, Ground Penetrating Radar investigation, and resistivity models enabled us to calculate the sand sediment thickness above the bedrock

    Holocene Sea Level Recorded by Beach Rocks at Ionian Coasts of Apulia (Italy)

    Get PDF
    Beach rocks are located along many coasts of the Mediterranean basin. The early diagenesis environment and the mean sea level along the shoreline make these landforms useful in the reconstruction of relative sea-level changes and, in particular, as SLIPs (sea-level index points). The beach rocks surveyed along the Ionian coast of Apulia were found to be well preserved at three specific depth ranges: 6–9 m, 3–4 m, and from the foreshore to about 1.20 m. Morpho-bathymetric and dive surveys were performed to assess both the geometries and the extension of the submerged beach rocks. Samples were collected at these different depths in the localities of Lido Torretta, Campomarino di Maruggio, San Pietro in Bevagna, and Porto Cesareo. Bivalve shells were identified and isolated from the beach rock samples collected at a depth of 7 m; AMS dating provided a calibrated age of about 7.8 ka BP. Their morphology and petrological features, along with the time constraints, enabled us to (i) reconstruct the local sea-level curve during the Holocene, (ii) corroborate acquired knowledge of the relative sea-level history, and (iii) identify possible local vertical land movement (VLM)

    A geo-chemo-mechanical study of a highly polluted marine system (Taranto, Italy) for the enhancement of the conceptual site model

    Get PDF
    The paper presents the results of the analysis of the geo-chemo-mechanical data gathered through an innovative multidisciplinary investigation campaign in the Mar Piccolo basin, a heavily polluted marine bay aside the town of Taranto (Southern Italy). The basin is part of an area declared at high environmental risk by the Italian government. The cutting-edge approach to the environmental characterization of the site was promoted by the Special Commissioner for urgent measures of reclamation, environmental improvements and redevelopment of Taranto and involved experts from several research fields, who cooperated to gather a new insight into the origin, distribution, mobility and fate of the contaminants within the basin. The investigation campaign was designed to implement advanced research methodologies and testing strategies. Differently from traditional investigation campaigns, aimed solely at the assessment of the contamination state within sediments lying in the top layers, the new campaign provided an interpretation of the geo-chemo-mechanical properties and state of the sediments forming the deposit at the seafloor. The integrated, multidisciplinary and holistic approach, that considered geotechnical engineering, electrical and electronical engineering, geological, sedimentological, mineralogical, hydraulic engineering, hydrological, chemical, geochemical, biological fields, supported a comprehensive understanding of the influence of the contamination on the hydro-mechanical properties of the sediments, which need to be accounted for in the selection and design of the risk mitigation measures. The findings of the research represent the input ingredients of the conceptual model of the site, premise to model the evolutionary contamination scenarios within the basin, of guidance for the environmental risk management. The study testifies the importance of the cooperative approach among researchers of different fields to fulfil the interpretation of complex polluted eco-systems

    The dark side of the Albano crater lake

    No full text
    The Albano Lake is the deepest volcanic lake among the volcanoes located in the Italian peninsula. It belongs to the Colli Albani volcanic complex whose last largest eruptions are dated back to about ~30 Kyr, although minor events likely occurred during historical times at 7000 yr B.P. or earlier. After the end of the volcanic activity the Crater of Albano became a lake whose level changes are known since historical times. On November 2005, was performed the first very high resolution bathymetric survey of the Albano lake by means of a multibeam echo sounder, integrated with the GPS/RTK positioning technique A particular effort was devoted to produce a high resolution morphobathimetric map, which aims to provide a Digital Terrain Model of the lake floor for wide applications. The surveys did not revealed significant gas exhalative centres, which should indicate a current active gas release from the lake floor. Here we show the technical details of the bathymetric surveys, the very high resolution bathymetric map and the main morphological features of the Albano Lake bottom

    The high resolution bathymetric map of the exhalative area of Panarea (Aeolian Islands, Italy)

    No full text
    On November 3, 2002 a shallow submarine gas eruption occurred in an area of 2.3 km2 east of Panarea (Aeolian volcanic arc, Southern Thyrrenian Sea, Italy). The exhalative area, surrounded by the islets of Dattilo, Panarelli, Lisca Bianca, Bottaro and Lisca Nera, has been known since historical times for the hydrothermal activity related to the Panarea volcanic complex. Due to the exceptional characteristics of the phenomenon, different geological, geochemical, geophysical and studies were carried out in this still poorly known volcanic area. A particular effort was devoted to producing a high resolution bathymetric map that also aimed to estimate the amount and location of the active exhalative centers and their variations in space and time. Data were obtained by three RTK multibeam surveys performed between December 2002 and December 2003. Here we show and discuss the technical details of the bathymetric surveys, the bathymetric map at 0.5 m resolution, and the accurate location of the 606 main exhalative centres active during the 2002-2003 crisis. The bathymetric data and the maps show two prevailing principal NE-SW and NW-SE alignments that match the spatial distribution of the exhalation centres. The accurate positioning at submeter accuracy of the gas vents is useful in the monitoring activity and to study their temporal and spatial variability

    Per una identità archeologica del litorale sud-est di Bari. I dati delle ricognizioni subacquee 2017-2019

    No full text
    As part of the project of underwater archeology and coastal landscapes along the coast of central Puglia, systematic research has been carried out on samples from the Bari littoral. The investigations, carried out both by direct observation and with surveying instruments (Side Scan Sonar, Sub‐bottom Profilers, Multy Beams Echo Sounder), concern a large portion of the east coast beginning at the shore opposite the historic centre of Bari and extending to other areas of anchorage (Cala San Giorgio and Torre a Mare). In the “city littoral” of Bari it has been possible to identify a wharf for unloading cargoes, characterized by numerous ceramic, metal and stone finds, located in the immediate vicinity of a submerged structure built with squared stone blocks. In particular, the lithic finds recorded underwater have petrological features not found in the geology of Apulia which mark them as imported pieces. They have been subjected to archaeometric analyses which have yielded data that support the hypotheses that have been formulated on their areas of origin. The nature of the port of Bari as a place for off-loading cargoes over a period of approx. 27 centuries is read in conjunction with the anchorages and secondary landings, as well as numerous other types of unpublished sites found: caves, settlements, burials, towers and stone quarries which together contribute to defining an archaelogical identity for this coast
    corecore