23 research outputs found

    Genome-wide analysis of 30 -untranslated regions supports the existence of post-transcriptional regulons controlling gene expression in trypanosomes

    Get PDF
    In eukaryotic cells, a group of messenger ribonucleic acids (mRNAs) encoding functionally interrelated proteins together with the trans-acting factors that coordinately modulate their expression is termed a post-transcriptional regulon, due to their partial analogy to a prokaryotic polycistron. This mRNA clustering is organized by sequence-specific RNA-binding proteins (RBPs) that bind cis-regulatory elements in the noncoding regions of genes, and mediates the synchronized control of their fate. These recognition motifs are often characterized by conserved sequences and/or RNA structures, and it is likely that various classes of cis-elements remain undiscovered. Current evidence suggests that RNA regulons govern gene expression in trypanosomes, unicellular parasites which mainly use post-transcriptional mechanisms to control protein synthesis. In this study, we used motif discovery tools to test whether groups of functionally related trypanosomatid genes contain a common cis-regulatory element. We obtained conserved structured RNA motifs statistically enriched in the noncoding region of 38 out of 53 groups of metabolically related transcripts in comparison with a random control. These motifs have a hairpin loop structure, a preferred sense orientation and are located in close proximity to the open reading frames. We found that 15 out of these 38 groups represent unique motifs in which most 30 -UTR signature elements were group-specific. Two extensively studied Trypanosoma cruzi RBPs, TcUBP1 and TcRBP3 were found associated with a few candidate RNA regulons. Interestingly, 13 motifs showed a strong correlation with clusters of developmentally co-expressed genes and six RNA elements were enriched in gene clusters affected after hyperosmotic stress. Here we report a systematic genome-wide in silico screen to search for novel RNA-binding sites in transcripts, and describe an organized network of several coordinately regulated cohorts of mRNAs in T. cruzi. Moreover, we found that structured RNA elements are also conserved in other human pathogens. These results support a model of regulation of gene expression by multiple post-transcriptional regulons in trypanosomes.Fil: de Gaudenzi, Javier Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Carmona, Santiago Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Agüero, Fernan Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Frasch, Alberto Carlos C.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentin

    A 43-nucleotide U-rich element in 3′-untranslated region of large number of Trypanosoma cruzi transcripts is important for mRNA Abundance in intracellular amastigotes

    Get PDF
    Trypanosoma cruzi, the agent of Chagas disease, does not seem to control gene expression through regulation of transcription initiation and makes use of post-transcriptional mechanisms. We report here a 43-nt U-rich RNA element located in the 3′-untranslated region (3′-UTR) of a large number of T. cruzi mRNAs that is important for mRNA abundance in the intracellular amastigote stage of the parasite. Whole genome scan analysis, differential display RT-PCR, Northern blot, and RT-PCR analyses were used to determine the transcript levels of more than 900 U-rich-containing mRNAs of large gene families as well as single and low copy number genes. Our results indicate that the 43-nt U-richmRNAelement is preferentially present in amastigotes. The cis-element of a protein kinase 3′-UTR but not its mutated version promoted the expression of the green fluorescent protein reporter gene in amastigotes. The regulatory ciselement, but not its mutated version, was also shown to interact with the trypanosome-specific RNA-binding protein (RBP) TcUBP1 but not with other related RBPs. Co-immunoprecipitation experiments of TcUBP1-containing ribonucleoprotein complexes formed in vivo validated the interaction with representative endogenous RNAs having the element. These results suggest that this 43-nt U-rich element together with other yet unidentified sequences might be involved in the modulation of abundance and/or translation of subsets of transcripts in the amastigote stage.Fil: Li, Zhu Hong. University of Georgia; Estados UnidosFil: de Gaudenzi, Javier Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Alvarez, Vanina Eder. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Mendiondo, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Wang, Haiming. University of Georgia; Estados UnidosFil: Kissinger, Jessica C.. University of Georgia; Estados UnidosFil: Frasch, Alberto Carlos C.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Docampo, Roberto. University of Georgia; Estados Unido

    RNA-Binding Domain Proteins in Kinetoplastids: a Comparative Analysis

    No full text
    RNA-binding proteins are important in many aspects of RNA processing, function, and destruction. One class of such proteins contains the RNA recognition motif (RRM), which consists of about 90 amino acid residues, including the canonical RNP1 octapeptide: (K/R)G(F/Y)(G/A)FVX(F/Y). We used a variety of homology searches to classify all of the RRM proteins of the three kinetoplastids Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. All three organisms have similar sets of RRM-containing protein orthologues, suggesting common posttranscriptional processing and regulatory pathways. Of the 75 RRM proteins identified in T. brucei, only 13 had clear homologues in other eukaryotes, although 8 more could be given putative functional assignments. A comparison with the 18 RRM proteins of the obligate intracellular parasite Encephalitozoon cuniculi revealed just 3 RRM proteins which appear to be conserved at the primary sequence level throughout eukaryotic evolution: poly(A) binding protein, the rRNA-processing protein MRD1, and the nuclear cap binding protein

    Insights into the Regulation of mRNA Processing of Polycistronic Transcripts Mediated by DRBD4/PTB2, a Trypanosome Homolog of the Polypyrimidine Tract‐Binding Protein

    No full text
    Trypanosomes regulate gene expression mostly by posttranscriptional mechanisms, including control of mRNA turnover and translation efficiency. This regulation is carried out via certain elements located at the 3'-untranslated regions of mRNAs, which are recognized by RNA-binding proteins. In trypanosomes, trans-splicing is of central importance to control mRNA maturation. We have previously shown that TcDRBD4/PTB2, a trypanosome homolog of the human polypyrimidine tract-binding protein splicing regulator, interacts with the intergenic region of one specific dicistronic transcript, referred to as TcUBP (and encoding for TcUBP1 and TcUBP2, two closely kinetoplastid-specific proteins). In this work, a survey of TcUBP RNA processing revealed certain TcDRBD4/PTB2-regulatory elements within its intercistronic region, which are likely to influence the trans-splicing rate of monocistronic-derived transcripts. Furthermore, TcDRBD4/PTB2 overexpression in epimastigote cells notably decreased both UBP1 and UBP2 protein expression. This type of posttranscriptional gene regulatory mechanism could be extended to other transcripts as well, as we identified several other RNA precursor molecules that specifically bind to TcDRBD4/PTB2. Altogether, these findings support a model in which TcDRBD4/PTB2-containing ribonucleoprotein complexes can prevent trans-splicing. This could represent another stage of gene expression regulation mediated by the masking of trans-splicing/polyadenylation signals.Fil: de Gaudenzi, Javier Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Jager, Adriana Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Izcovich, Ronan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Campo, Vanina Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentin

    Implementation of DVB-S2X super-frame format 4 for wideband transmission

    No full text
    Recently the extension of the digital video broadcasting second generation standard for transmission over satellite (DVB-S2) has been finalized in order to achieve a higher spectral efficiency without introducing fundamental changes to the complexity and structure of the common DVB-S2 standard. Therefore, this extension is termed DVB-S2X. In this paper, we focus on a more powerful physical layer frame structure, known as Super-Frame (SF), which has been adopted as optional waveform container in Annex E of the DVB-S2X specification. The paper provides insights to capabilities of the SF structure in support of emerging system applications.. Analytical results of the SF performance are complemented by the performance results obtained from an end-to-end testbed implementing SF format 4, which is optimized for wideband transmission and very low SNR reception conditions. The testbed includes prototype design of modulator and demodulator featuring the SF generation and detection capability. The prototype devices are able to operate at a wide range of signal-to-noise ratios and at high symbol rates. This design represents the basis for planned over-the-air tests using a single wideband satellite transponder to demonstrate the feasibility of transmitting and receiving 1 Gbit/s

    RNA-binding proteins and mRNA turnover in trypanosomes

    No full text
    Trypanosomes, protozoan parasites of the order Kinetoplastida, control gene expression essentially through post-transcriptional mechanisms. Several motifs located mainly in the 3 0 untranslated region, such as AU-rich elements (AREs), were recently shown to modulate mRNA half-life, and are able to modify mRNA abundance in vivo through the interaction with specific RNA-binding proteins. Along with the detection of an active exosome, decapping activities and a regulated 3 0 to 5 0 exonuclease activity stimulated by AREs, these results suggest that modulation of mRNA stability is essential in trypanosomes. These regulatory processes are specific for different developmental stages and thus relevant for allowing trypanosomes to adapt to variable environmental conditions. The many steps from RNA transcription to protein translation are linked cis-elements and mRNA half-life During parasite transmission, adaptation to different environments seems to be achieved by a rapid change in mRNA half-life and translational control, rather than transcriptional activation. Such regulatory activity is due to the interaction between cis elements and trans-acting factors. The cis elements were mainly identified in the 3 0 untranslated region (UTR), but also in 5 0 UTRs and coding regions (see Ref. [4], and references therein). Sequences, such as the AU-rich elements (AREs), were identified in the 3 0 UTR of the small mucin gene (SMUG) and EP-rich procyclin (EP1) mRNAs in Trypanosoma cruzi and Trypanosoma brucei, respectively [7 -9]. These elements were shown to confer selective mRNA destabilization in a stage-specific manner and, at least in T. cruzi, to be recognized by specific trans-acting factor

    Transcriptomic analysis of N-terminal mutated Trypanosoma cruzi UBP1 knockdown underlines the importance of this RNA-binding protein in parasite development.

    No full text
    BackgroundDuring its life cycle, the human pathogen Trypanosoma cruzi must quickly adapt to different environments, in which the variation in the gene expression of the regulatory U-rich RNA-binding protein 1 (TcUBP1) plays a crucial role. We have previously demonstrated that the overexpression of TcUBP1 in insect-dwelling epimastigotes orchestrates an RNA regulon to promote differentiation to infective forms.MethodsIn an attempt to generate TcUBP1 knockout parasites by using CRISPR-Cas9 technology, in the present study, we obtained a variant transcript that encodes a protein with 95% overall identity and a modified N-terminal sequence. The expression of this mutant protein, named TcUBP1mut, was notably reduced compared to that of the endogenous form found in normal cells. TcUBP1mut-knockdown epimastigotes exhibited normal growth and differentiation into infective metacyclic trypomastigotes and were capable of infecting mammalian cells.ResultsWe analyzed the RNA-Seq expression profiles of these parasites and identified 276 up- and 426 downregulated genes with respect to the wildtype control sample. RNA-Seq comparison across distinct developmental stages revealed that the transcriptomic profile of these TcUBP1mut-knockdown epimastigotes significantly differs not only from that of epimastigotes in the stationary phase but also from the gene expression landscape characteristic of infective forms. This is both contrary to and consistent with the results of our recent study involving TcUBP1-overexpressing cells.ConclusionTogether, our findings demonstrate that the genes exhibiting opposite changes under overexpression and knockdown conditions unveil key mRNA targets regulated by TcUBP1. These mostly encompass transcripts that encode for trypomastigote-specific surface glycoproteins and ribosomal proteins, supporting a role for TcUBP1 in determining the molecular characteristics of the infective stage
    corecore