3,921 research outputs found
A general relativistic model for the light propagation in the gravitational field of the Solar System: the dynamical case
Modern astrometry is based on angular measurements at the micro-arcsecond
level. At this accuracy a fully general relativistic treatment of the data
reduction is required. This paper concludes a series of articles dedicated to
the problem of relativistic light propagation, presenting the final
microarcsecond version of a relativistic astrometric model which enable us to
trace back the light path to its emitting source throughout the non-stationary
gravity field of the moving bodies in the Solar System. The previous model is
used as test-bed for numerical comparisons to the present one. Here we also
test different versions of the computer code implementing the model at
different levels of complexity to start exploring the best trade-off between
numerical efficiency and the micro-arcsecond accuracy needed to be reached.Comment: 40 pages, 5 figures. Accepted for publication on The Astrophysical
Journal. Manuscript prepared with AASLaTeX macros v.5.
Testing general relativity by micro-arcsecond global astrometry
The global astrometric observations of a GAIA-like satellite were modeled
within the PPN formulation of Post-Newtonian gravitation. An extensive
experimental campaign based on realistic end-to-end simulations was conducted
to establish the sensitivity of global astrometry to the PPN parameter \gamma,
which measures the amount of space curvature produced by unit rest mass. The
results show that, with just a few thousands of relatively bright,
photometrically stable, and astrometrically well behaved single stars, among
the ~10^9 objects that will be observed by GAIA, \gamma can be estimated after
1 year of continuous observations with an accuracy of ~10^{-5} at the 3\sigma
level. Extrapolation to the full 5-year mission of these results based on the
scaling properties of the adjustment procedure utilized suggests that the
accuracy of \simeq 2x10^{-7}, at the same 3\sigma level, can be reached with
\~10^6 single stars, again chosen as the most astrometrically stable among the
millions available in the magnitude range V=12-13. These accuracies compare
quite favorably with recent findings of scalar-tensor cosmological models,
which predict for \gamma a present-time deviation, |1-\gamma|, from the General
Relativity value between 10^{-5} and 10^{-7}.Comment: 7 pages, 2 figures, to be published in A&
The Formation of non-Keplerian Rings of Matter about Compact Stars
The formation of energetic rings of matter in a Kerr spacetime with an
outward pointing acceleration field does not appear to have previously been
noted as a relativistic effect. In this paper we show that such rings are a
gravimagneto effect with no Newtonian analog, and that they do not occur in the
static limit. The energy efficiency of these rings can, depending of the
strength of the acceleration field, be much greater than that of Keplerian
disks. The rings rotate in a direction opposite to that of compact star about
which they form. The size and energy efficiency of the rings depend on the
fundamental parameters of the spacetime as well as the strength the
acceleration field.Comment: 19 pages, 7 figures, 1 diagram. Figures are included in the text
using the "graphicx" package. If you do not have this package you can use
epsfig, or another package as long as you alter the tex file appropriately.
Alternatively you could print the figures out seperatel
Reply to 'Commentary on: Mapping the landscape of immunonutrition and cancer research: a comprehensive bibliometric analysis on behalf of NutriOnc Research Group (Int J Surg 2023, Epub ahead of print)'
Mapping the landscape of immunonutrition and cancer research: a comprehensive bibliometric analysis on behalf of NutriOnc Research Grou
Collimation of a spherical collisionless particles stream in Kerr space-time
We examine the propagation of collisionless particles emitted from a
spherical shell to infinity. The number distribution at infinity, calculated as
a function of the polar angle, exhibits a small deviation from uniformity. The
number of particles moving from the polar region toward the equatorial plane is
slightly larger than that of particles in the opposite direction, for an
emission radius in extreme Kerr space-time. This means that the black
hole spin exerts an anti-collimation effect on the particles stream propagating
along the rotation axis. We also confirm this property in the weak field limit.
The quadrupole moment of the central object produces a force toward the
equatorial plane. For a smaller emission radius , the absorption of
particles into the black hole, the non-uniformity and/or the anisotropy of the
emission distribution become much more important.Comment: 11 pages, 8 figures; accepted for publication in CQ
Modified Special Relativity on a fluctuating spacetime
It was recently proposed that deformations of the relativistic symmetry, as
those considered in Deformed Special Relativity (DSR), can be seen as the
outcome of a measurement theory in the presence of non-negligible (albeit
small) quantum gravitational fluctuations [1,2]. In this paper we explicitly
consider the case of a spacetime described by a flat metric endowed with
stochastic fluctuations and, for a free particle, we show that DSR-like
nonlinear relations between the spaces of the measured and classical momenta,
can result from the average of the stochastic fluctuations over a scale set be
the de Broglie wavelength of the particle. As illustrative examples we consider
explicitly the averaging procedure for some simple stochastic processes and
discuss the physical implications of our results.Comment: 7 pages, no figure
Navigation in Curved Space-Time
A covariant and invariant theory of navigation in curved space-time with
respect to electromagnetic beacons is written in terms of J. L. Synge's
two-point invariant world function. Explicit equations are given for navigation
in space-time in the vicinity of the Earth in Schwarzschild coordinates and in
rotating coordinates. The restricted problem of determining an observer's
coordinate time when their spatial position is known is also considered
Raychaudhuri's equation and aspects of relativistic charged collapse
We use the Raychaudhuri equation to probe certain aspects related to the
gravitational collapse of a charged medium. The aim is to identify the stresses
the Maxwell field exerts on the fluid and discuss their potential implications.
Particular attention is given to those stresses that resist contraction. After
looking at the general case, we consider the two opposite limits of poor and
high electrical conductivity. In the former there are electric fields but no
currents, while in the latter the situation is reversed. When the conductivity
is low, we find that the main agents acting against the collapse are the
Coulomb forces triggered by the presence of an excess charge. At the ideal
Magnetohydrodynamic (MHD) limit, on the other hand, the strongest resistance
seems to come from the tension of the magnetic forcelines. In either case, we
discuss whether and how the aforementioned resisting stresses may halt the
contraction and provide a set of conditions making this likely to happen.Comment: Revised version, to appear in PR
Destroying black holes with test bodies
If a black hole can accrete a body whose spin or charge would send the black
hole parameters over the extremal limit, then a naked singularity would
presumably form, in violation of the cosmic censorship conjecture. We review
some previous results on testing cosmic censorship in this way using the test
body approximation, focusing mostly on the case of neutral black holes. Under
certain conditions a black hole can indeed be over-spun or over-charged in this
approximation, hence radiative and self-force effects must be taken into
account to further test cosmic censorship.Comment: Contribution to the proceedings of the First Mediterranean Conference
on Classical and Quantum Gravity (talk given by T. P. S.). Summarizes the
results of Phys. Rev. Lett. 103, 141101 (2009), arXiv:0907.4146 [gr-qc] and
considers further example
The RAMOD astrometric observable and the relativistic astrometric catalogs
AbstractWe describe a way to compare current relativistic astrometric models accurate to the micro-arcsecond level. The observed stellar direction can be written as a function of several parts, linking the astrometric observables to the relativistic effects associated to the stellar kinematical properties and distances as seen inside the gravitational field of our Solar System, i.e. the so called relativistic astrometric parameters, providing a tool for comparing the RAMOD framework to the pM/pN approaches
- …