30 research outputs found

    Glutathione-mediated antioxidant response and aerobic metabolism: two crucial factors involved in determining the multi-drug resistance of high-risk neuroblastoma

    Get PDF
    Neuroblastoma, a paediatric malignant tumor, is initially sensitive to etoposide, a drug to which many patients develop chemoresistance. In order to investigate the molecular mechanisms responsible for etoposide chemoresistance, HTLA-230, a human MYCN-amplified neuroblastoma cell line, was chronically treated with etoposide at a concentration that in vitro mimics the clinically-used dose. The selected cells (HTLA-Chr) acquire multi-drug resistance (MDR), becoming less sensitive than parental cells to high doses of etoposide or doxorubicin. MDR is due to several mechanisms that together contribute to maintaining non-toxic levels of H2O2. In fact, HTLA-Chr cells, while having an efficient aerobic metabolism, are also characterized by an up-regulation of catalase activity and higher levels of reduced glutathione (GSH), a thiol antioxidant compound. The combination of such mechanisms contributes to prevent membrane lipoperoxidation and cell death. Treatment of HTLA-Chr cells with L-Buthionine-sulfoximine, an inhibitor of GSH biosynthesis, markedly reduces their tumorigenic potential that is instead enhanced by the exposure to N-Acetylcysteine, able to promote GSH synthesis.Collectively, these results demonstrate that GSH and GSH-related responses play a crucial role in the acquisition of MDR and suggest that GSH level monitoring is an efficient strategy to early identify the onset of drug resistance and to control the patient's response to therapy

    Goat milk extracellular vesicles: immuno-modulation effects on porcine monocyte-derived macrophages in vitro

    Get PDF
    IntroductionExtracellular vesicles (EVs) are nanometric-membrane-bound sub-cellular structures, which can be recovered from milk. Milk EVs have drawn increasing interest due to their potential biomedical applications, therefore it is important to investigate their impact on key immune cells, such as macrophages.MethodsIn this work, the immunomodulatory effects of goat milk EVs on untreated (moMФ) and classically activated (moM1) porcine monocyte-derived macrophages were investigated using flow cytometry, ELISA, and gene expression assays.ResultsThese particles were efficiently internalized by macrophages and high doses (60 mg protein weight) triggered the upregulation of MHC I and MHC II DR on moMФ, but not on moM1. In moMФ, exposure to low doses (0.6 mg) of mEVs enhanced the gene expression of IL10, EBI3, and IFNB, whereas high doses up-regulated several pro-inflammatory cytokines. These nanosized structures slightly modulated cytokine gene expression on moM1. Accordingly, the cytokine (protein) contents in culture supernatants of moMФ were mildly affected by exposure to low doses of mEVs, whereas high doses promoted the increased release of TNF, IL-8, IL-1a, IL-1b, IL-1Ra, IL-6, IL-10, and IL-12. The cytokines content in moM1 supernatants was not critically affected.DiscussionOverall, our data support a clinical application of these molecules: they polarized macrophages toward an M1-like phenotype, but this activation seemed to be controlled, to prevent potentially pathological over-reaction to stressors

    PKCδ Sensitizes Neuroblastoma Cells to L-Buthionine-Sulfoximine and Etoposide Inducing Reactive Oxygen Species Overproduction and DNA Damage

    Get PDF
    Neuroblastoma is a type of pediatric cancer. The sensitivity of neuroblastoma (NB) cancer cells to chemotherapy and radiation is inhibited by the presence of antioxidants, such as glutathione (GSH), which is crucial in counteracting the endogenous production of reactive oxygen species (ROS). We have previously demonstrated that cells depleted of GSH undergo apoptosis via oxidative stress and Protein kinase C (PKC) δ activation. In the present study, we transfected PKCδ in NB cells resistant to oxidative death induced by L-buthionine-S,R-sulfoximine (BSO), a GSH-depleting agent. Cell responses, in terms of ROS production, apoptosis and DNA damage were evaluated. Moreover, PKCδ activation was monitored by analyzing the phosphorylation status of threonine 505 residue, carrying out PKC activity assay and investigating the subcellular localization of the kinase. The cell responses obtained in BSO-resistant cells were also compared with those obtained in BSO-sensitive cells subjected to the same experimental protocol. Our results demonstrate, for the first time, that PKCδ induces DNA oxidation and ROS overproduction leading to apoptosis of BSO-resistant NB cells and potentiates the cytotoxic effects induced by BSO in sensitive cells. Moreover, PKCδ overexpression enhances the sensitivity of NB cells to etoposide, a well-characterised drug, commonly used in neuroblastoma therapy. Altogether our data provide evidence of a pro-oxidant role of PKCδ that might be exploited to design new therapeutic strategies aimed at selective killing of cancer cells and overcoming drug resistance. However, it becomes evident that a more detailed understanding of ROS-mediated signaling in cancer cells is necessary for the development of redox-modulated therapeutic approaches

    Growth dynamics and bioactivity variation of the Mediterranean demosponges <i>Agelas oroides</i> (Agelasida, Agelasidae) and <i>Petrosia ficiformis</i> (Haplosclerida, Petrosiidae)

    No full text
    Growth dynamics and bioactivity variation of the Mediterranean demosponges Agelas oroides and Petrosia ficiformis were investigated over 15 months at Paraggi and Colombara within the Marine Reserve of Portofino Promontory (Mediterranean Sea, Ligurian Sea, Italy). For both species, growth rates varied between individuals and were unaffected by initial sponge size. The two species showed a different trend in growth pattern: A. oroides did not vary significantly between seasons, sites and depths; in contrast, some individuals of P. ficiformis showed a seasonal pattern, shrinking during winter as water temperature decreased and growing during summer when water temperature increased. Differences in growth between the two species may result from different reproductive cycles, food availability, species-specific thermophily and patterns of spatial competition. Moreover, spatial competition probably induced sponges to produce bioactive secondary molecules. Spatial and temporal variation of bioactivity of both species was examined for the first time by studying its effect on human neuroblastoma cells. The bioactivity of A. oroides extracts differed significantly between seasons, sites and depths, whereas the cytotoxicity of P. ficiformis differed significantly between seasons and depths (differences for sites were not determined). These results suggest the possible influence of environmental factors on bioactive metabolite biosynthesis

    Oxysterol mixture and, in particular, 27-hydroxycholesterol drive M2 polarization of human macrophages

    Get PDF
    Macrophages play a crucial role in atherosclerosis progression. Classically activated M1 macrophages have been found in rupture-prone atherosclerotic plaques whereas alternatively activated macrophages, M2, localize in stable plaque. Macrophage accumulation of cholesterol and of its oxidized derivatives (oxysterols) leads to the formation of foam cells, a hallmark of atherosclerotic lesions. In this study, the effects of oxysterols in determining the functional polarization of human macrophages were investigated. Monocytes, purified from peripheral blood mononuclear cells of healthy donors, were differentiated into macrophages (M0) and treated with an oxysterol mixture, cholesterol, or ethanol, every 4 H for a total of 4, 8, and 12 H. The administration of the compounds was repeated in order to maintain the levels of oxysterols constant throughout the treatment. Compared with ethanol treatment, the oxysterol mixture decreased the surface expression of CD36 and CD204 scavenger receptors and reduced the amount of reactive oxygen species whereas it did not affect either cell viability or matrix metalloprotease-9 activity. Moreover, the oxysterol mixture increased the expression of both liver X receptor \u3b1 and ATP-binding cassette transporter 1. An enhanced secretion of the immunoregulatory cytokine IL-10 accompanied these events. The results supported the hypothesis that the constant levels of oxysterols and, in particular, of 27-hydroxycholesterol stimulate macrophage polarization toward the M2 immunomodulatory functional phenotype, contributing to the stabilization of atherosclerotic plaques

    In vitro evaluation of immunomodulatory activities of goat milk Extracellular Vesicles (mEVs) in a model of gut inflammation

    No full text
    Gut represents a major immunological defense barrier with mucosal immune system and intestinal epithelial cells (IECs). In all intestinal diseases, in particular inflammatory bowel disease (IBD), both the absorption and the local immune system are compromised and alternative effective therapies are sought after. Extracellular Vesicles (EVs) have the capability to regulate immune cells within the inflammatory microenvironment, by dampening inflammation and restoring intestinal barrier integrity. Recently, the immune-modulatory role of EVs has also been confirmed for milk EVs (mEVs), notable for their easy production, high sample volumes, cost-effective scalable production and non-toxic and non-immunogenic behavior. In this context, the aim of this study was to evaluate goat mEV anti-inflammatory and immuno-modulating effects on an in vitro model (IPEC-J2) of intestinal inflammation through gene expression evaluation with RT-qPCR and cytokine release dosage with ELISA test. After the establishment of a pro-inflammatory environment due to LPS stimuli, IL6, CXCL8, IL12p35, IL12p40, IFNB, IL18, TLR7 and NOS2 resulted significantly up-regulated in stimulated IPEC-J2 cells compared to those of the basal culture. After 48 h of mEV treatment in inflamed IPEC-J2 a partial restoration of initial conditions was detected, with the IL18 and IL12p40 significant down-regulation, and IL12p35, EBI3, TLR7, BD1 and BD3 up-regulation. IL-18 reduced protein production was also detected in supernatants. Moreover, a decrease of MMP9 and NOS2 together with a strong up-regulation of MUC2 indicated a recovery of cellular homeostasis and, therefore, potential beneficial effects on the intestinal mucosa. Nevertheless, 48 h post-treatment, an increased gene expression and protein release of IL-8 was observed. This paper is one of the firsts to assess the effect of goat mEVs and the first one, in particular, of doing this on an in vitro model of gut inflammation. The obtained results show a potential capability of goat mEVs to modulate inflammation and to play beneficial effects on the intestinal mucosa.n

    Olive Mill Waste-Water Extract Enriched in Hydroxytyrosol and Tyrosol Modulates Host–Pathogen Interaction in IPEC-J2 Cells

    No full text
    The dietary supplementation of olive oil by-products, including olive mill waste-water (OMWW) in animal diets, is a novel application that allows for their re-utilization and recycling and could potentially decrease the use of antibiotics, antimicrobial resistance risk in livestock species, and the occurrence of intestinal diseases. Salmonella serovar typhimurium is one of the most widespread intestinal pathogens in the world, causing enterocolitis in pigs. The aim of this study was to investigate the effect of an OMWW extract enriched in polyphenols (hydroxytyrosol and tyrosol) in the immune response of an intestinal porcine epithelial cell line (IPEC-J2) following S. typhimurium infection. Cells were pre-treated with OMWW-extract polyphenols (OMWW-EP, 0.35 and 1.4 µg) for 24 h and then infected with S. typhimurium for 1 h. We evaluated bacterial invasiveness and assayed IPEC-J2 gene expression with RT-qPCR and cytokine release with an ELISA test. The obtained results showed that OMWW-EP (1.4 µg) significantly reduced S. typhimurium invasiveness; 0.35 µg decreased the IPEC-J2 gene expression of IL1B, MYD88, DEFB1 and DEFB4A, while 1.4 µg down-regulated IL1B and DEFB4A and increased TGFB1. The cytokine content was unchanged in infected cells. This is the first study demonstrating the in vitro immunomodulatory and antimicrobial activity of OMWW extracts enriched in polyphenols, suggesting a protective role of OMWW polyphenols on the pig intestine and their potential application as feed supplements in farm animals such as pigs

    Redox Homeostasis and Cellular Antioxidant Systems: Crucial Players in Cancer Growth and Therapy

    Get PDF
    Reactive oxygen species (ROS) and their products are components of cell signaling pathways and play important roles in cellular physiology and pathophysiology. Under physiological conditions, cells control ROS levels by the use of scavenging systems such as superoxide dismutases, peroxiredoxins, and glutathione that balance ROS generation and elimination. Under oxidative stress conditions, excessive ROS can damage cellular proteins, lipids, and DNA, leading to cell damage that may contribute to carcinogenesis. Several studies have shown that cancer cells display an adaptive response to oxidative stress by increasing expression of antioxidant enzymes and molecules. As a double-edged sword, ROS influence signaling pathways determining beneficial or detrimental outcomes in cancer therapy. In this review, we address the role of redox homeostasis in cancer growth and therapy and examine the current literature regarding the redox regulatory systems that become upregulated in cancer and their role in promoting tumor progression and resistance to chemotherapy

    Characterization of D-17 Canine Osteosarcoma Cell Line and Evaluation of Its Ability to Response to Infective Stressor Used as Alternative Anticancer Therapy

    No full text
    Osteosarcoma (OSA) is a rare cancer both in human and dog although the incidence rate in dogs is 27 times higher than in human. Many studies employed D-17 as cell line for in vitro test to evaluate conventional anticancer therapies; however, little is known about D-17 cell line. The aim of our study was to evaluate the basal level of gene expression of pivotal molecules in the innate immune response and cell cycle regulation and to establish the ability of this cell line to react to Salmonella typhimurium (ST) infective stressor. IL15, IL10, iNOS, TLR5, CD14, PTEN and IL18 were expressed in an inconsistent manner among experiments. The other genes under study were expressed in all samples. ST showed ability to penetrate D-17 causing pro-inflammatory response. Our results outline the expression in D-17 of important genes involved in innate immune response. These results provide important data on D-17 basal gene expression profile useful for in vitro preliminary evaluation of new therapeutic approaches
    corecore