71 research outputs found

    String Organization of Field Theories: Duality and Gauge Invariance

    Full text link
    String theories should reduce to ordinary four-dimensional field theories at low energies. Yet the formulation of the two are so different that such a connection, if it exists, is not immediately obvious. With the Schwinger proper-time representation, and the spinor helicity technique, it has been shown that field theories can indeed be written in a string-like manner, thus resulting in simplifications in practical calculations, and providing novel insights into gauge and gravitational theories. This paper continues the study of string organization of field theories by focusing on the question of local duality. It is shown that a single expression for the sum of many diagrams can indeed be written for QED, thereby simulating the duality property in strings. The relation between a single diagram and the dual sum is somewhat analogous to the relation between a old- fashioned perturbation diagram and a Feynman diagram. Dual expressions are particularly significant for gauge theories because they are gauge invariant while expressions for single diagrams are not.Comment: 20 pages in Latex, including seven figures in postscrip

    Formation and evolution of coronal rain observed by SDO/AIA on February 22, 2012

    Full text link
    The formation and dynamics of coronal rain are currently not fully understood. Coronal rain is the fall of cool and dense blobs formed by thermal instability in the solar corona towards the solar surface with acceleration smaller than gravitational free fall. We aim to study the observational evidence of the formation of coronal rain and to trace the detailed dynamics of individual blobs. We used time series of the 171 \AA\, and 304 \AA\, spectral lines obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) above active region AR 11420 on February 22, 2012. Observations show that a coronal loop disappeared in the 171 \AA\ channel and appeared in the 304 \AA\ line\text{}\text{} more than one hour later, which indicates a rapid cooling of the coronal loop from 1 MK to 0.05 MK. An energy estimation shows that the radiation is higher than the heat input, which indicates so-called catastrophic cooling. The cooling was accompanied by the formation of coronal rain in the form of falling cold plasma. We studied two different sequences of falling blobs. The first sequence includes three different blobs. The mean velocities of the blobs were estimated to be 50 km s1^{-1}, 60 km s1^{-1} and 40 km s1^{-1}. A polynomial fit shows the different values of the acceleration for different blobs, which are lower than free-fall in the solar corona. The first and second blob move along the same path, but with and without acceleration, respectively. We performed simple numerical simulations for two consecutive blobs, which show that the second blob moves in a medium that is modified by the passage of the first blob. Therefore, the second blob has a relatively high speed and no acceleration, as is shown by observations. The second sequence includes two different blobs with mean velocities of 100 km s1^{-1} and 90 km s1^{-1}, respectively.Comment: 8 pages, 8 figures, Accepted in A&

    Quasi-oscillatory dynamics observed in ascending phase of the flare on March 6, 2012

    Full text link
    Context. The dynamics of the flaring loops in active region (AR) 11429 are studied. The observed dynamics consist of several evolution stages of the flaring loop system during both the ascending and descending phases of the registered M-class flare. The dynamical properties can also be classified by different types of magnetic reconnection, related plasma ejection and aperiodic flows, quasi-periodic oscillatory motions, and rapid temperature and density changes, among others. The focus of the present paper is on a specific time interval during the ascending (pre-flare) phase. Aims. The goal is to understand the quasi-periodic behavior in both space and time of the magnetic loop structures during the considered time interval. Methods.We have studied the characteristic location, motion, and periodicity properties of the flaring loops by examining space-time diagrams and intensity variation analysis along the coronal magnetic loops using AIA intensity and HMI magnetogram images (from the Solar Dynamics Observatory(SDO)). Results. We detected bright plasma blobs along the coronal loop during the ascending phase of the solar flare, the intensity variations of which clearly show quasi-periodic behavior. We also determined the periods of these oscillations. Conclusions. Two different interpretations are presented for the observed dynamics. Firstly, the oscillations are interpreted as the manifestation of non-fundamental harmonics of longitudinal standing acoustic oscillations driven by the thermodynamically nonequilibrium background (with time variable density and temperature). The second possible interpretation we provide is that the observed bright blobs could be a signature of a strongly twisted coronal loop that is kink unstable.Comment: 12 pages, 10 figures, A&A, in pres

    Long-period oscillations of active region patterns: least-squares mapping on second-order curves

    Full text link
    Active regions (ARs) are the main sources of variety in solar dynamic events. Automated detection and identification tools need to be developed for solar features for a deeper understanding of the solar cycle. Of particular interest here are the dynamical properties of the ARs, regardless of their internal structure and sunspot distribution. We studied the oscillatory dynamics of two ARs: NOAA 11327 and NOAA 11726 using two different methods of pattern recognition. We developed a novel method of automated AR border detection and compared it to an existing method for the proof-of-concept. The first method uses least-squares fitting on the smallest ellipse enclosing the AR, while the second method applies regression on the convex hull.} After processing the data, we found that the axes and the inclination angle of the ellipse and the convex hull oscillate in time. These oscillations are interpreted as the second harmonic of the standing long-period kink oscillations (with the node at the apex) of the magnetic flux tube connecting the two main sunspots of the ARs. In both ARs we have estimated the distribution of the phase speed magnitude along the magnetic tubes (along the two main spots) by interpreting the obtained oscillation of the inclination angle as the standing second harmonic kink mode. After comparing the obtained results for fast and slow kink modes, we conclude that both of these modes are good candidates to explain the observed oscillations of the AR inclination angles, as in the high plasma β\beta regime the phase speeds of these modes are comparable and on the order of the Alfv\'{e}n speed. Based on the properties of the observed oscillations, we detected the appropriate depth of the sunspot patterns, which coincides with estimations made by helioseismic methods. The latter analysis can be used as a basis for developing a magneto-seismological tool for ARs.Comment: 10 pages, 6 figures, Accepted for publication in A&

    Inelastic J/ψJ/\psi production in polarized photon-hadron collisions

    Full text link
    Presented here is a calculation of inelastic J/ψJ/\psi production in polarized photon-hadron collisions under the framework of NRQCD factorization formalism. We consider the photoproduction of \jpsi in the energy range relevant to HERA. The Weizs\"acker-Williams approximation is adopted in the evaluation of the cross sections for epep collisions. We found that this process can give another independent test for the color-octet mechanism, and the different features for the two color-octet processes may provide further informations on the mechanism for inelastic \jpsi photoproduction. And the discrepancy on the production asymmetry AA between various sets of polarized gluon distribution functions is also found to be distinctive.Comment: 14pages, 6 PS figure

    Multiloop String-Like Formulas for QED

    Full text link
    Multiloop gauge-theory amplitudes written in the Feynman-parameter representation are poised to take advantage of two important developments of the last decade: the spinor-helicity technique and the superstring reorganization. The former has been considered in a previous article; the latter will be elaborated in this paper. We show here how to write multiloop string-like formulas in the Feynman-parameter representation for any process in QED, including those involving other non-electromagnetic interactions. The general connection between the Feynman-parameter approach and the superstring/first-quantized approach is discussed. In the special case of a one-loop multi-photon amplitude, these formulas reduce to the ones obtained by the superstring and the first quantized methods. The string-like formulas exhibits a simple gauge structure which makes the Ward-Takahashi identity apparent, and enables the integration-by-parts technique of Bern and Kosower to be applied, so that gauge-invariant parts can be extracted diagram-by-diagram with the seagull vertex neglected.Comment: 25 pages in Plain Tex, plus four figures in a postscript file; McGill/92-5

    Weyl-van-der-Waerden formalism for helicity amplitudes of massive particles

    Get PDF
    The Weyl-van-der-Waerden spinor technique for calculating helicity amplitudes of massive and massless particles is presented in a form that is particularly well suited to a direct implementation in computer algebra. Moreover, we explain how to exploit discrete symmetries and how to avoid unphysical poles in amplitudes in practice. The efficiency of the formalism is demonstrated by giving explicit compact results for the helicity amplitudes of the processes gamma gamma -> f fbar, f fbar -> gamma gamma gamma, mu^- mu^+ -> f fbar gamma.Comment: 24 pages, late

    Generalized Gluon Currents and Applications in QCD

    Full text link
    We consider the process containing two quark lines and an arbitrary number of gluons in a spinor helicity framework. A current with two off-shell gluons appears in the amplitude. We first study this modified gluon current using recursion relations. The recursion relation for the modified gluon current is solved for the case of like-helicity gluons. We apply the modified gluon current to compute the amplitude for qqˉqqˉgggq \bar q \rightarrow q \bar q gg \cdots g in the like-helicity gluon case.Comment: 80 pages, 2 figures (appended in pictex), CLNS 91/112

    Diffractive light quark jet production at hadron colliders in the two-gluon exchange model

    Get PDF
    Massless quark and antiquark jet production at large transverse momentum in the coherent diffractive processes at hadron colliders is calculated in the two-gluon exchange parametrization of the Pomeron model. We use the helicity amplitude method to calculate the cross section formula. We find that for the light quark jet production the diffractive process is related to the differential off-diagonal gluon distribution function in the proton. We estimate the production rate for this process at the Fermilab Tevatron by approximating the off-diagonal gluon distribution function by the usual diagonal gluon distribution in the proton. And we find that the cross sections for the diffractive light quark jet production and the charm quark jet production are in the same order of magnitude. We also use the helicity amplitude method to calculate the diffractive charm jet production at hadron colliders, by which we reproduce the leading logarithmic approximation result of this process we previously calculated.Comment: 15 pages, 4 PS figures, Revte
    corecore