80 research outputs found

    Demonic Kleene Algebra

    Get PDF
    Nous rappelons d’abord le concept d’algĂšbre de Kleene avec domaine (AKD). Puis, nous expliquons comment utiliser les opĂ©rateurs des AKD pour dĂ©finir un ordre partiel appelĂ© raffinement dĂ©moniaque ainsi que d’autres opĂ©rateurs dĂ©moniaques (plusieurs de ces dĂ©finitions proviennent de la littĂ©rature). Nous cherchons Ă  comprendre comment se comportent les AKD munies des opĂ©rateurs dĂ©moniaques quand on exclut les opĂ©rateurs angĂ©liques usuels. C’est ainsi que les propriĂ©tĂ©s de ces opĂ©rateurs dĂ©moniaques nous servent de base pour axiomatiser une algĂšbre que nous appelons AlgĂšbre dĂ©moniaque avec domaine et opĂ©rateur t-conditionnel (ADD-[opĂ©rateur t-conditionnel]). Les lois des ADD-[opĂ©rateur t-conditionnel] qui ne concernent pas l’opĂ©rateur de domaine correspondent Ă  celles prĂ©sentĂ©es dans l’article Laws of programming par Hoare et al. publiĂ© dans la revue Communications of the ACM en 1987. Ensuite, nous Ă©tudions les liens entre les ADD-[opĂ©rateur t-conditionnel] et les AKD munies des opĂ©rateurs dĂ©moniaques. La question est de savoir si ces structures sont isomorphes. Nous dĂ©montrons que ce n’est pas le cas en gĂ©nĂ©ral et nous caractĂ©risons celles qui le sont. En effet, nous montrons qu’une AKD peut ĂȘtre transformĂ©e en une ADD-[opĂ©rateur t-conditionnel] qui peut ĂȘtre transformĂ©e Ă  son tour en l’AKD de dĂ©part. Puis, nous prĂ©sentons les conditions nĂ©cessaires et suffisantes pour qu’une ADD-[opĂ©rateur t-conditionnel] puisse ĂȘtre transformĂ©e en une AKD qui peut ĂȘtre transformĂ©e Ă  nouveau en l’ADD-[opĂ©rateur t-conditionnel] de dĂ©part. Les conditions nĂ©cessaires et suffisantes mentionnĂ©es prĂ©cĂ©demment font intervenir un nouveau concept, celui de dĂ©composition. Dans un contexte dĂ©moniaque, il est difficile de distinguer des transitions qui, Ă  partir d’un mĂȘme Ă©tat, mĂšnent Ă  des Ă©tats diffĂ©rents. Le concept de dĂ©composition permet d’y arriver simplement. Nous prĂ©sentons sa dĂ©finition ainsi que plusieurs de ses propriĂ©tĂ©s.We first recall the concept of Kleene algebra with domain (KAD). Then we explain how to use the operators of KAD to define a demonic refinement ordering and demonic operators (many of these definitions come from the literature). We want to know how do KADs with the demonic operators but without the usual angelic ones behave. Then, taking the properties of the KAD-based demonic operators as a guideline, we axiomatise an algebra that we call Demonic algebra with domain and t-conditional (DAD-[opĂ©rateur t-conditionnel]). The laws of DAD-[opĂ©rateur t-conditionnel] not concerning the domain operator agree with those given in the 1987 Communications of the ACM paper Laws of programming by Hoare et al. Then, we investigate the relationship between DAD-[opĂ©rateur t-conditionnel] and KAD-based demonic algebras. The question is whether every DAD-[opĂ©rateur t-conditionnel] is isomorphic to a KAD-based demonic algebra. We show that it is not the case in general. However, we characterise those that are. Indeed, we demonstrate that a KAD can be transformed into a DAD-[opĂ©rateur t-conditionnel] which can be transformed back into the initial KAD. We also establish necessary and sufficient conditions for which a DAD-[opĂ©rateur t-conditionnel] can be transformed into a KAD which can be transformed back into the initial DAD-[opĂ©rateur t-conditionnel]. Finally, we define the concept of decomposition. This notion is involved in the necessary and sufficient conditions previously mentioned. In a demonic context, it is difficult to distinguish between transitions that, from a given state, go to different states. The concept of decomposition enables to do it easily. We present its definition together with some of its properties

    Minimizing the Continuous Diameter when Augmenting Paths and Cycles with Shortcuts

    Get PDF
    We seek to augment a geometric network in the Euclidean plane with shortcuts to minimize its continuous diameter, i.e., the largest network distance between any two points on the augmented network. Unlike in the discrete setting where a shortcut connects two vertices and the diameter is measured between vertices, we take all points along the edges of the network into account when placing a shortcut and when measuring distances in the augmented network. We study this network augmentation problem for paths and cycles. For paths, we determine an optimal shortcut in linear time. For cycles, we show that a single shortcut never decreases the continuous diameter and that two shortcuts always suffice to reduce the continuous diameter. Furthermore, we characterize optimal pairs of shortcuts for convex and non-convex cycles. Finally, we develop a linear time algorithm that produces an optimal pair of shortcuts for convex cycles. Apart from the algorithms, our results extend to rectifiable curves. Our work reveals some of the underlying challenges that must be overcome when addressing the discrete version of this network augmentation problem, where we minimize the discrete diameter of a network with shortcuts that connect only vertices

    Probing Convex Polygons with a Wedge

    Full text link
    Minimizing the number of probes is one of the main challenges in reconstructing geometric objects with probing devices. In this paper, we investigate the problem of using an ω\omega-wedge probing tool to determine the exact shape and orientation of a convex polygon. An ω\omega-wedge consists of two rays emanating from a point called the apex of the wedge and the two rays forming an angle ω\omega. To probe with an ω\omega-wedge, we set the direction that the apex of the probe has to follow, the line L→\overrightarrow L, and the initial orientation of the two rays. A valid ω\omega-probe of a convex polygon OO contains OO within the ω\omega-wedge and its outcome consists of the coordinates of the apex, the orientation of both rays and the coordinates of the closest (to the apex) points of contact between OO and each of the rays. We present algorithms minimizing the number of probes and prove their optimality. In particular, we show how to reconstruct a convex nn-gon (with all internal angles of size larger than ω\omega) using 2n−22n-2 ω\omega-probes; if ω=π/2\omega = \pi/2, the reconstruction uses 2n−32n-3 ω\omega-probes. We show that both results are optimal. Let NBN_B be the number of vertices of OO whose internal angle is at most ω\omega, (we show that 0≀NB≀30 \leq N_B \leq 3). We determine the shape and orientation of a general convex nn-gon with NB=1N_B=1 (respectively NB=2N_B=2, NB=3N_B=3) using 2n−12n-1 (respectively 2n+32n+3, 2n+52n+5) ω\omega-probes. We prove optimality for the first case. Assuming the algorithm knows the value of NBN_B in advance, the reconstruction of OO with NB=2N_B=2 or NB=3N_B=3 can be achieved with 2n+22n+2 probes,- which is optimal.Comment: 31 pages, 27 figure
    • 

    corecore