8 research outputs found

    Chikungunya virus' high genomic plasticity enables rapid adaptation to restrictive A549 cells

    No full text
    Chikungunya virus (CHIKV) is an emerging arthropod-borne virus that has spread globally during the last two decades. The virus is mainly transmitted by Aedes aegypti and Aedes albopictus mosquitos and is thus capable of replicating in both human and mosquito cells. CHIKV has a broad tropism in vivo, capable of replicating in various tissues and cell types but largely excluding blood cells. This was reflected in vitro by a broad array of adherent cell lines supporting CHIKV infection. One marked exception to this general rule is the resistance of the lung cancer-derived A549 cell line to CHIKV infection. We verified that A549 cells were restrictive to infection by multiple alphaviruses while being completely permissive to flavivirus infection. The adaptive growth of a primary CHIKV strain through multiple passages allowed the emergence of a CHIKV strain that productively infected A549 cells while causing overt cytopathic effects and without a fitness cost for replication in otherwise CHIKV-susceptible cells. Whole genome sequencing of polyclonal and monoclonal preparations of the adapted virus showed that a limited number of mutations consistently emerged in both structural (2 mutations in E2) and non-structural proteins (1 mutation in nsP1 and 1 mutation in nsP2). The introduction of the adaptive mutations, individually or in combinations, into a wild-type molecular clone of CHIKV allowed us to determine the relative contributions of the mutations to the new phenotype. We found that the mutations in the E2 envelope protein and non-structural proteins contributed significantly to the acquired phenotype. The nsP mutations were introduced in a split-genome trans-replicase assay to monitor their effect on viral genome replication efficiency. Interestingly, neither mutation supported increased viral genomic replication in either Vero or A549 cells

    The CD147 protein complex is involved in entry of Chikungunya virus and related alphaviruses in human cells

    No full text
    Chikungunya virus (CHIKV) is an arbovirus with a global spread and significant public health impact. It is a positive stranded RNA alphavirus belonging to the Togaviridae family. However, many questions about the replication cycle of CHIKV remain unanswered. The entry process of CHIKV is not completely understood nor are the associated virus-receptor interactions fully identified. Here, we designed an affinity purification mass spectrometry coupled approach that allowed the identification of factors that facilitate entry of CHIKV in human cells. The identified entry factors were further validated using CRISPR/Cas9. In HEK293T cells we identified the CD147 protein complex as an entry factor for CHIKV. We further showed the involvement of the CD147 protein complex in the replication cycle of related alphaviruses. Interestingly, CD147 contains similar protein domains as the previously identified alphavirus entry factor MXRA8

    The CD147 protein complex is involved in entry of Chikungunya virus and related alphaviruses in human cells

    No full text
    Chikungunya virus (CHIKV) is an arbovirus with a global spread and significant public health impact. It is a positive stranded RNA alphavirus belonging to the Togaviridae family. However, many questions about the replication cycle of CHIKV remain unanswered. The entry process of CHIKV is not completely understood nor are the associated virus-receptor interactions fully identified. Here, we designed an affinity purification mass spectrometry coupled approach that allowed the identification of factors that facilitate entry of CHIKV in human cells. The identified entry factors were further validated using CRISPR/Cas9. In HEK293T cells we identified the CD147 protein complex as an entry factor for CHIKV. We further showed the involvement of the CD147 protein complex in the replication cycle of related alphaviruses. Interestingly, CD147 contains similar protein domains as the previously identified alphavirus entry factor MXRA8

    Desirable cytolytic immune effector cell recruitment by interleukin-15 dendritic cells

    No full text
    Success of dendritic cell (DC) therapy in treating malignancies is depending on the DC capacity to attract immune effector cells, considering their reciprocal crosstalk is partially regulated by cell-contact-dependent mechanisms. Although critical for therapeutic efficacy, immune cell recruitment is a largely overlooked aspect regarding optimization of DC vaccination. In this paper we have made a head-to-head comparison of interleukin (IL)-15-cultured DCs and conventional IL-4-cultured DCs with regard to their proficiency in the recruitment of (innate) immune effector cells. Here, we demonstrate that IL-4 DCs are suboptimal in attracting effector lymphocytes, while IL15 DCs provide a favorable chemokine milieu for recruiting CD8(+) T cells, natural killer (NK) cells and gamma delta (γδ) T cells. Gene expression analysis revealed that IL-15 DCs exhibit a high expression of chemokines involved in antitumor immune effector cell attraction, while IL-4 DCs display a more immunoregulatory profile characterized by the expression of Th2 and regulatory T cell-attracting chemokines. This is confirmed by functional data indicating an enhanced recruitment of granzyme B(+) effector lymphocytes by IL-15 DCs, as compared to IL-4 DCs, and subsequent superior killing of tumor cells by the migrated lymphocytes. Elevated CCL4 gene expression in IL-15 DCs and lowered CCR5 expression on both migrated γδ T cells and NK cells, led to validation of increased CCL4 secretion by IL15 DCs. Moreover, neutralization of CCR5 prior to migration resulted in an important inhibition of γδ T cell and NK cell recruitment by IL-15 DCs. These findings further underscore the strong immunotherapeutic potential of IL-15 DCs
    corecore