11,809 research outputs found

    Field-Effect Transistors on Tetracene Single Crystals

    Full text link
    We report on the fabrication and electrical characterization of field-effect transistors at the surface of tetracene single crystals. We find that the mobility of these transistors reaches the room-temperature value of $0.4 \ cm^2/Vs$. The non-monotonous temperature dependence of the mobility, its weak gate voltage dependence, as well as the sharpness of the subthreshold slope confirm the high quality of single-crystal devices. This is due to the fabrication process that does not substantially affect the crystal quality.Comment: Accepted by Appl. Phys. Lett, tentatively scheduled for publication in the November 24, 2003 issu

    Twisted Open Strings from Closed Strings: The WZW Orientation Orbifolds

    Full text link
    Including {\it world-sheet orientation-reversing automorphisms} h^σH\hat{h}_{\sigma} \in H_- in the orbifold program, we construct the operator algebras and twisted KZ systems of the general WZW {\it orientation orbifold} Ag(H)/HA_g (H_-) /H_-. We find that the orientation-orbifold sectors corresponding to each h^σH\hat{h}_{\sigma} \in H_- are {\it twisted open} WZW strings, whose properties are quite distinct from conventional open-string orientifold sectors. As simple illustrations, we also discuss the classical (high-level) limit of our construction and free-boson examples on abelian gg.Comment: 65 pages, typos correcte

    Organic Single-Crystal Field-Effect Transistors

    Full text link
    We present an overview of recent studies of the charge transport in the field effect transistors on the surface of single crystals of organic low-molecular-weight materials. We first discuss in detail the technological progress that has made these investigations possible. Particular attention is devoted to the growth and characterization of single crystals of organic materials and to different techniques that have been developed for device fabrication. We then concentrate on the measurements of the electrical characteristics. In most cases, these characteristics are highly reproducible and demonstrate the quality of the single crystal transistors. Particularly noticeable are the small sub-threshold slope, the non-monotonic temperature dependence of the mobility, and its weak dependence on the gate voltage. In the best rubrene transistors, room-temperature values of μ\mu as high as 15 cm2^2/Vs have been observed. This represents an order-of-magnitude increase with respect to the highest mobility previously reported for organic thin film transistors. In addition, the highest-quality single-crystal devices exhibit a significant anisotropy of the conduction properties with respect to the crystallographic direction. These observations indicate that the field effect transistors fabricated on single crystals are suitable for the study of the \textit{intrinsic} electronic properties of organic molecular semiconductors. We conclude by indicating some directions in which near-future work should focus to progress further in this rapidly evolving area of research.Comment: Review article, to appear in special issue of Phys. Stat. Sol. on organic semiconductor

    A gobal fit to the anomalous magnetic moment, Higgs limit and b->s gamma in the constrained MSSM

    Full text link
    New data on the anomalous magnetic moment of the muon together with the b->s gamma decay rate and Higgs limits are considered within the supergravity inspired constrained minimal supersymmetric model. We perform a global statistical chi2 analysis of these data and show that the allowed region of parameter space is bounded from below by the Higgs limit, which depends on the trilinear coupling and from above by the anomalous magnetic moment.Comment: 3 pages, To appear in Proc. of SUSY01, Dubna (Russia

    Thermodynamics of Higher Spin Black Holes in AdS3_3

    Get PDF
    We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL(N,R)\times SL(N,R) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with W_N symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural definitions of the thermodynamically conjugate variables that follow from careful examination of the variational principle, and moreover agree with those obtained via canonical methods. Building on this intuition, we derive general expressions for the higher spin black hole entropy and free energy which are written entirely in terms of the Chern-Simons connections, and are valid for both static and rotating solutions. We compare our results to other proposals in the literature, and provide a new and efficient way to determine the generalization of the Cardy formula to a situation with higher spin charges.Comment: 30 pages, PDFLaTeX; v2: typos corrected, explicit expressions for the free energy adde

    New Spin-Two Gauged Sigma Models and General Conformal Field Theory

    Get PDF
    Recently, we have studied the general Virasoro construction at one loop in the background of the general non-linear sigma model. Here, we find the action formulation of these new conformal field theories when the background sigma model is itself conformal. In this case, the new conformal field theories are described by a large class of new spin-two gauged sigma models. As examples of the new actions, we discuss the spin-two gauged WZW actions, which describe the conformal field theories of the generic affine-Virasoro construction, and the spin-two gauged g/h coset constructions. We are able to identify the latter as the actions of the local Lie h-invariant conformal field theories, a large class of generically irrational conformal field theories with a local gauge symmetry.Comment: LaTeX, 28 pages, references and clarifying remarks adde

    Influence of the gate leakage current on the stability of organic single-crystal field-effect transistors

    Full text link
    We investigate the effect of a small leakage current through the gate insulator on the stability of organic single-crystal field-effect transistors (FETs). We find that, irrespective of the specific organic molecule and dielectric used, leakage current flowing through the gate insulator results in an irreversible degradation of the single-crystal FET performance. This degradation occurs even when the leakage current is several orders of magnitude smaller than the source-drain current. The experimental data indicate that a stable operation requires the leakage current to be smaller than $10^{-9} \ \mathrm{A/cm}^2$. Our results also suggest that gate leakage currents may determine the lifetime of thin-film transistors used in applications.Comment: submitted to Appl. Phys. Let
    corecore