7,369 research outputs found

    Design and construction of CMS central hadron calorimeter

    Get PDF
    The hadron calorimeter ( HCAL) for the Compact Muon Solenoid Detector ( CMS) covers the central pseudorapidity region ( eta <3.0). It is a sampling calorimeter with brass absorber plates interspersed with scintillator readout plates. In this note, we discuss test beam results used in the optimization of the final design of the calorimeter and report on the status of the construction of the absorber and scintillator packages of HCAL

    Fiber R and D for the CMS HCAL

    Get PDF
    This paper documents the fiber R and D for the CMS hadron barrel calorimeter (HCAL). The R and D includes measurements of fiber flexibility, splicing, mirror reflectivity, relative light yield, attenuation length, radiation effects, absolute light yield, and transverse tile uniformity. Schematics of the hardware for each measurement are shown. These studies are done for different diameters and kinds of multiclad fiber.Comment: 23 pages, 30 Figures 89 pages, 41 figures, corresponding author: H. Budd, [email protected]

    A Study of an Acrylic Cerenkov Radiation Detector

    Get PDF
    An experiment investigating the angle of Cerenkov light emitted by 3-MeV electrons traversing an acrylic detector has been developed for use in the advanced physics laboratory course at the University of Rochester. In addition to exploring the experimental phenomena of Cerenkov radiation and total internal reflection, the experiment introduces students to several experimental techniques used in actual high energy and nuclear physics experiments, as well as to analysis techniques involving Poisson statistics. [to be published in Am. J. Phys. 67 (Oct/Nov 1999).

    Relativistic Hamiltonians in many-body theories

    Get PDF
    We discuss the description of a many-body nuclear system using Hamiltonians that contain the nucleon relativistic kinetic energy and potentials with relativistic corrections. Through the Foldy-Wouthuysen transformation, the field theoretical problem of interacting nucleons and mesons is mapped to an equivalent one in terms of relativistic potentials, which are then expanded at some order in 1/m_N. The formalism is applied to the Hartree problem in nuclear matter, showing how the results of the relativistic mean field theory can be recovered over a wide range of densities.Comment: 14 pages, uses REVTeX and epsfig, 3 postscript figures; a postscript version of the paper is available by anonymous ftp at ftp://carmen.to.infn.it/pub/depace/papers/951

    Inelastic electron-nucleus scattering and scaling at high inelasticity

    Get PDF
    Highly inelastic electron scattering is analyzed within the context of the unified relativistic approach previously considered in the case of quasielastic kinematics. Inelastic relativistic Fermi gas modeling that includes the complete inelastic spectrum - resonant, non-resonant and Deep Inelastic Scattering - is elaborated and compared with experimental data. A phenomenological extension of the model based on direct fits to data is also introduced. Within both models, cross sections and response functions are evaluated and binding energy effects are analyzed. Finally, an investigation of the second-kind scaling behavior is also presented.Comment: 39 pages, 13 figures; formalism extended and slightly reorganized, conclusions extended; to appear in Phys. Rev.

    HST Photometry and Keck Spectroscopy of the Rich Cluster MS1054-03: Morphologies, Butcher-Oemler Effect and the Color-Magnitude Relation at z=0.83

    Get PDF
    We present a study of 81 I selected, spectroscopically-confirmed members of the X-ray cluster MS1054-03 at z=0.83. Redshifts and spectral types were determined from Keck spectroscopy. Morphologies and accurate colors were determined from a large mosaic of HST WFPC2 images in F606W and F814W. Early-type galaxies constitute only 44% of this galaxy population. Thirty-nine percent are spiral galaxies, and 17% are mergers. The early-type galaxies follow a tight and well-defined color-magnitude relation, with the exception of a few outliers. The observed scatter is 0.029 +- 0.005 magnitudes in restframe U-B. Most of the mergers lie close to the CM relation defined by the early-type galaxies. They are bluer by only 0.07 +- 0.02 magnitudes, and the scatter in their colors is 0.07 +- 0.04 magnitudes. Spiral galaxies in MS1054-03 exhibit a large range in their colors. The bluest spiral galaxies are 0.7 magnitudes bluer than the early-type galaxies, but the majority is within +- 0.2 magnitudes of the early-type galaxy sequence. The red colors of the mergers and the majority of the spiral galaxies are reflected in the fairly low Butcher-Oemler blue fraction of MS1054-03: f_B=0.22 +- 0.05. The slope and scatter of the CM relation of early-type galaxies are roughly constant with redshift, confirming previous studies that were based on ground-based color measurements and very limited membership information. However, the scatter in the combined sample of early-type galaxies and mergers is twice as high as the scatter of the early-type galaxies alone. This is a direct demonstration of the ``progenitor bias'': high redshift early-type galaxies seem to form a homogeneous, old population because the progenitors of the youngest present-day early-type galaxies are not included in the sample.Comment: Accepted for publication in the ApJ. At http://astro.caltech.edu/~pgd/cm1054/ color figures can be obtaine
    corecore