3,242 research outputs found

    Fibroblast Growth Factor 23 and Adverse Clinical Outcomes in Type 2 Diabetes:a Bitter-Sweet Symphony

    Get PDF
    Purpose of Review: Fibroblast growth factor 23 (FGF23) is a key phosphate-regulating hormone that has been associated with adverse outcomes in patients with chronic kidney disease (CKD). Emerging data suggest that FGF23 plays a specific role in type 2 diabetes, partly independent of kidney function. We aimed to summarize current literature on the associations between FGF23 and outcomes in patients with type 2 diabetes with or without CKD. Recent Findings: Several cohort studies have shown strong associations between plasma FGF23 and cardiovascular outcomes in diabetic CKD. Moreover, recent data suggest that FGF23 are elevated and may also be a risk factor for cardiovascular disease and mortality in type 2 diabetes patients without CKD, although the magnitude of the association is smaller than in CKD patients. Summary: Diabetes-related factors may influence plasma FGF23 levels, and a higher FGF23 levels seem to contribute to a higher cardiovascular and mortality risk in patients with type 2 diabetes. Although this risk may be relevant in diabetic individuals with preserved kidney function, it is strongly accentuated in diabetic nephropathy. Future studies should clarify if FGF23 is merely a disease severity marker or a contributor to adverse outcomes in type 2 diabetes and establish if antidiabetic medication can modify FGF23 levels

    Pre-Transplant Plasma Potassium as a Potential Risk Factor for the Need of Early Hyperkalaemia Treatment after Kidney Transplantation:A Cohort Study

    Get PDF
    INTRODUCTION: Plasma potassium (K+) abnormalities are common among patients with chronic kidney disease and are associated with higher rates of death, major adverse cardiac events, and hospitalization in this population. Currently, no guidelines exist on how to handle pre-transplant plasma K+ in renal transplant recipients (RTR). OBJECTIVE: The aim of this study is to examine the relation between pre-transplant plasma K+ and interventions to resolve hyperkalaemia within 48 h after kidney transplantation. METHODS: In a single-centre cohort study, we addressed the association between the last available plasma K+ level before transplantation and the post-transplant need for dialysis or use of K+-lowering medication to resolve hyperkalaemia within 48 h after renal transplantation using multivariate logistic regression analysis. RESULTS: 151 RTR were included, of whom 51 (33.8%) patients received one or more K+ interventions within 48 h after transplantation. Multivariate regression analysis revealed that a higher pre-transplant plasma K+ was associated with an increased risk of post-transplant intervention (odds ratio 2.2 [95% CI: 1.1-4.4]), independent of donor type (deceased or living) and use of K+-lowering medication within 24 h prior to transplantation). CONCLUSIONS: This study indicates that a higher pre-transplant plasma K+ is associated with a higher risk of interventions necessary to resolve hyperkalaemia within 48 h after renal transplantation. Further research is recommended to determine a cutoff level for pre-transplant plasma K+ that can be used in practice

    Dietary Patterns Based on Estimated Glomerular Filtration Rate and Kidney Function Decline in the General Population:The Lifelines Cohort Study

    Get PDF
    No specific dietary patterns have been established that are linked with loss of kidney function. We aimed to identify an estimated glomerular filtration rate-based dietary pattern (eGFR-DP) and to evaluate its association with eGFR decline and chronic kidney disease (CKD) incidence in the general population. We included 78,335 participants from the Lifelines cohort in the Northern Netherlands. All participants had an eGFR >60 mL/min/1.73 m2 at baseline and completed a second visit five years later. The eGFR-DP was constructed at baseline using a 110-item food frequency questionnaire by reduced rank regression, stratified by sex. Logistic regression was performed to evaluated the association between the eGFR-DP score and either a ≄20% eGFR decline or incident CKD. Among women, eGFR-DP were characterized by high consumption of egg, cheese, and legumes and low consumption of sweets, white meat, and commercially prepared dishes. In men, eGFR-DP were characterized by high consumption of cheese, bread, milk, fruits, vegetables, and beer and low consumption of white and red meat. A higher eGFR-DP score was associated with a lower risk of a ≄20% eGFR decline (OR 4th vs. 1st quartile, women: 0.79 [95% CI: 0.73-0.87]; men: 0.67 [0.59-0.76]). The association between the eGFR-DP score and CKD incidence was lost upon adjustment for baseline eGFR. Our results provide support for dietary interventions to prevent kidney function decline in the general population

    Interplay between gut microbiota, bone health and vascular calcification in chronic kidney disease

    Get PDF
    Deregulations in gut microbiota may play a role in vascular and bone disease in chronic kidney disease (CKD). As glomerular filtration rate declines, the colon becomes more important as a site of excretion of urea and uric acid, and an increased bacterial proteolytic fermentation alters the gut microbial balance. A diet with limited amounts of fibre, as well as certain medications (eg phosphate binders, iron supplementation, antibiotics) further contribute to changes in gut microbiota composition among CKD patients. At the same time, both vascular calcification and bone disease are common in patients with advanced kidney disease. This narrative review describes emerging evidence on gut dysbiosis, vascular calcification, bone demineralization and their interrelationship termed the ‘gut‐bone‐vascular axis’ in progressive CKD. The role of diet, gut microbial metabolites (ie indoxyl sulphate, p‐cresyl sulphate, trimethylamine N‐oxide (TMAO) and short‐chain fatty acids (SCFA)), vitamin K deficiency, inflammatory cytokines and their impact on both bone health and vascular calcification are discussed. This framework may open up novel preventive and therapeutic approaches targeting the microbiome in an attempt to improve cardiovascular and bone health in CKD

    Lifestyle, Inflammation, and Vascular Calcification in Kidney Transplant Recipients:Perspectives on Long-Term Outcomes

    Get PDF
    After decades of pioneering and improvement, kidney transplantation is now the renal replacement therapy of choice for most patients with end-stage kidney disease (ESKD). Where focus has traditionally been on surgical techniques and immunosuppressive treatment with prevention of rejection and infection in relation to short-term outcomes, nowadays, so many people are long-living with a transplanted kidney that lifestyle, including diet and exposure to toxic contaminants, also becomes of importance for the kidney transplantation field. Beyond hazards of immunological nature, a systematic assessment of potentially modifiable-yet rather overlooked-risk factors for late graft failure and excess cardiovascular risk may reveal novel targets for clinical intervention to optimize long-term health and downturn current rates of premature death of kidney transplant recipients (KTR). It should also be realized that while kidney transplantation aims to restore kidney function, it incompletely mitigates mechanisms of disease such as chronic low-grade inflammation with persistent redox imbalance and deregulated mineral and bone metabolism. While the vicious circle between inflammation and oxidative stress as common final pathway of a multitude of insults plays an established pathological role in native chronic kidney disease, its characterization post-kidney transplant remains less than satisfactory. Next to chronic inflammatory status, markedly accelerated vascular calcification persists after kidney transplantation and is likewise suggested a major independent mechanism, whose mitigation may counterbalance the excess risk of cardiovascular disease post-kidney transplant. Hereby, we first discuss modifiable dietary elements and toxic environmental contaminants that may explain increased risk of cardiovascular mortality and late graft failure in KTR. Next, we specify laboratory and clinical readouts, with a postulated role within persisting mechanisms of disease post-kidney transplantation (i.e., inflammation and redox imbalance and vascular calcification), as potential non-traditional risk factors for adverse long-term outcomes in KTR. Reflection on these current research opportunities is warranted among the research and clinical kidney transplantation community

    Plasma ADMA associates with all-cause mortality in renal transplant recipients

    Get PDF
    Asymmetric dimethylarginine (ADMA) is a key endogenous inhibitor of endothelial NO synthase that affects endothelial function, blood pressure and vascular remodeling. Increased plasma levels of ADMA are associated with worse outcome from cardiovascular disease. Due to endothelial dysfunction before and after kidney transplantation, renal transplant recipients (RTR) are at high risk for the alleged deleterious effects of ADMA. We investigated the associations of ADMA levels with all-cause mortality and graft failure in RTR. Plasma ADMA levels were determined in 686 stable outpatient RTR (57 % male, 53 ± 13 years), with a functioning graft for ?1 year. Determinants of ADMA were evaluated with multivariate linear regression models. Associations between ADMA and mortality were assessed using multivariable Cox regression analyses. The strongest associations with plasma ADMA in the multivariable analyses were male gender, donor age, parathyroid hormone, NT-pro-BNP and use of calcium supplements. During a median follow-up of 3.1 [2.7-3.9] years, 79 (12 %) patients died and 45 (7 %) patients developed graft failure. ADMA was associated with increased all-cause mortality [HR 1.52 (95 % CI 1.26-1.83] per SD increase, P < 0.001], whereby associations remained upon adjustment for confounders. ADMA was associated with graft failure [HR 1.41 (1.08-1.83) per SD increase, P = 0.01]; however, upon addition of eGFR significance was lost. High levels of plasma ADMA are associated with increased mortality in RTR. Our findings connect disturbed NO metabolism with patient survival after kidney transplantation
    • 

    corecore