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1  |   INTRODUCTION

The human gut microbiome is composed of trillions of mi-
croorganisms including bacteria, fungi, viruses and archaea, 
which co-exist in a balanced relationship with their host in 
healthy state.1,2 Among others, the microbiome protects 
against pathogens, modulates the immune system and reg-
ulates endogenous metabolism of nutrients, in concert with 
lifestyle-related factors.1 The advent of microbial DNA 

sequencing technologies has allowed profiling of diverse 
microbial communities in the gut, providing evidence that 
although its composition displays huge inter-individual vari-
ation, there is a common pattern.3 The human gut microbiota 
is composed of more than 1000 different microbial species 
with particular taxonomic characteristics.3 The prevailing 
phyla composing the usual gut microbiota are Firmicutes, 
Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria 
and Verrucomicrobia, with the two first corresponding to 
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Abstract
Deregulations in gut microbiota may play a role in vascular and bone disease in 
chronic kidney disease (CKD). As glomerular filtration rate declines, the colon be-
comes more important as a site of excretion of urea and uric acid, and an increased 
bacterial proteolytic fermentation alters the gut microbial balance. A diet with lim-
ited amounts of fibre, as well as certain medications (eg phosphate binders, iron 
supplementation, antibiotics) further contribute to changes in gut microbiota compo-
sition among CKD patients. At the same time, both vascular calcification and bone 
disease are common in patients with advanced kidney disease. This narrative review 
describes emerging evidence on gut dysbiosis, vascular calcification, bone deminer-
alization and their interrelationship termed the ‘gut-bone-vascular axis’ in progres-
sive CKD. The role of diet, gut microbial metabolites (ie indoxyl sulphate, p-cresyl 
sulphate, trimethylamine N-oxide (TMAO) and short-chain fatty acids (SCFA)), vi-
tamin K deficiency, inflammatory cytokines and their impact on both bone health 
and vascular calcification are discussed. This framework may open up novel preven-
tive and therapeutic approaches targeting the microbiome in an attempt to improve 
cardiovascular and bone health in CKD.
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90% of gut microbiota.2 Although gut microbiota composi-
tion is considered generally stable at short-term, fluctuations 
and acute changes may occur both at short- and long-term 
after exposition to disruptive factors such as diet, medication, 
ageing and pathological conditions.2,3

Emerging evidence implicates alterations in gut micro-
biota (ie gut dysbiosis) to play a central role in the patho-
genesis of many diseases including chronic kidney disease 
(CKD).4 CKD is a noteworthy global public health issue 
with rising prevalence that affects over 850 million individ-
uals worldwide.5 Common causes of CKD include diabetes, 
hypertension, glomerulopathies, tubulo-interstitial nephritis 
secondary to infections or exposure to nephrotoxic agents, 
among others.6 As kidney function declines, CKD is char-
acterized by metabolic complications including anaemia, 
metabolic acidosis and abnormalities in bone and mineral 
metabolism.7 Abnormalities in bone and mineral metabolism 
not only lead to an increased risk of fractures,8 but have also 
been associated with an increased risk of vascular calcifica-
tion, cardiovascular complications and mortality.9 Uraemia 
also promotes an imbalance in the intestinal microbiota, re-
sulting in an increased production of toxins and deleterious 
effects, such as vascular and renal disease progression.10

Although vascular calcification and bone disorders in 
CKD patients are generally considered to be driven by shared 
pathophysiological mechanisms, it has only recently been 
appreciated that gut microbiota may be a major third compo-
nent influencing both vasculature and bone. This review aims 
to describe emerging evidence on abnormalities in the vascu-
lar system, bone, and gut and their interrelationship termed 
the ‘gut-bone-vascular axis’ in progressive CKD.

2  |   VASCULAR AND BONE 
ABNORMALITIES IN CKD

2.1  |  Vascular calcification

Along with the decline in GFR, a systemic change in min-
eral metabolism takes place in patients with progressive 
CKD. These changes are collectively termed Chronic Kidney 
Disease-Mineral and Bone Disorder (CKD-MBD). CKD-
MBD is characterized by one or more abnormalities in cir-
culating minerals or their regulating hormones (eg calcium, 
phosphorus, PTH and vitamin D), bone abnormalities and 
vascular calcification.11

Chronic kidney disease is accompanied by an excessively 
high cardiovascular mortality risk, which may be at least in 
part be attributed to vascular calcification in the context of 
CKD-MBD. Extensive deregulations in bone and mineral 
metabolism may be observed even in very young dialysis pa-
tients and contribute to detrimental outcomes.12 Vascular cal-
cification is an active and highly regulated cellular process, 

defined by the deposition of calcium-phosphate crystals 
within the intima and media layers of the vasculature and/or 
heart valves.13 Besides well-known traditional risk factors for 
vascular calcification such as age, male gender, diabetes, dys-
lipidaemia, hypertension, smoking and inflammation, vascu-
lar calcification in CKD patients (since early stages until after 
renal replacement therapies) is additionally driven by dereg-
ulations in mineral metabolism,14-17 and phenotypic changes 
in vascular smooth muscle cells (VSMC) represent the initial 
step in this pathological process, namely osteochondrogenic 
differentiation and apoptosis of VSMC.18 Multifaceted intri-
cate mechanisms in CKD-induced vascular calcification also 
comprise the instability and liberation of matrix extracellular 
vesicles containing calcium and phosphate from bone and 
VSMC, and elastin (most abundant protein in media wall) 
degradation, promoting calcium deposition.19 Moreover, an 
unbalanced environment brought by the mineral deregula-
tions impairs the effects of vascular calcification inhibitors 
(eg pyrophosphate, adenosine, matrix Gla protein, osteo-
pontin, fetuin-A, osteoprotegerin, bone morphogenetic pro-
tein-7, magnesium, vitamin K, klotho), while enhancing the 
action of promoters (eg inflammatory cytokines, oxidative 
stress, uremic toxins, osteocalcin, osteonectin, bone mor-
phogenetic protein-2, Runx2, secondary calciprotein parti-
cles).19-23 Deregulations in many of these factors have been 
identified and linked with vascular calcification and adverse 
clinical outcomes.16,24,25 A recent study with CKD patients 
with different levels of renal function has demonstrated an 
augmented expression of alkaline phosphatase and Runx2 in 
VSMC of CKD arteries, an indicative of osteogenic differ-
entiation.26 The role of Wnt inhibitors such as sclerostin and 
DKK1 (dickkopf-1) remains controversial.27,28 Interestingly, 
many of the above-mentioned factors are not only involved 
in vascular calcification, but also regulate bone metabolism, 
and are implicated in bone abnormalities in CKD.

2.2  |  Bone disease in chronic kidney disease

Chronic kidney disease is characterized by a strongly el-
evated facture risk, with dialysis patients exhibiting a risk 
ranging from 1.5 to 8-fold in comparison with the gen-
eral population.29 Between 1992 and 2009, there has been 
an increase of 50.2% in the incidence of hip and vertebral 
fractures and of 40.6% in arm and leg fractures requiring 
hospitalization among haemodialysis patients in the United 
States.30 A more recent epidemiological study has disclosed 
an inverse association between estimated glomerular filtra-
tion rate (eGFR) and fracture incidence with a hazard ratio of 
1.25 (95% CI 1.05-1.49) for eGFR <60 mL/min/1.73 m2 and 
1.65 (95% CI 1.14-2.37) for eGFR <45 mL/min/1.73 m2.31 
Furthermore, the effect of decreased eGFR on fracture inci-
dence was more noticeable in younger and male patients.31 
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Moreover, haemodialysis patients presenting with a fracture 
had higher unadjusted rates of death (3.7-fold) and death/
rehospitalization (4.0-fold) dialysis patients without a frac-
ture.29 The increased risk of fracture has also been observed 
among CKD patients after kidney transplantation.32,33 Over 
the first 3 years following transplantation, the risk of a hip 
fracture is 34% higher than in dialysis patients, and over the 
first 5 years post-transplant one-fourth will have a fracture.33 
A recent meta-analysis has disclosed an overall fracture in-
cidence rate of 8.95 per 1,000 person-years among dialysis 
patients and kidney transplant recipients (KTR).32

2.3  |  Vascular calcification and bone disease 
in CKD: Shared aetiology?

The parallel development of bone disease and vascular cal-
cification in CKD patients and the overlapping factors driv-
ing these deregulations implicate a shared aetiology, at least 
in part. A large body of evidence has already documented 
the coexistence of bone disease and vascular calcification in 
CKD patients.34-36 Nevertheless, the mechanisms connecting 
abnormalities in bone and vasculature remain incompletely 
understood. Since bone matrix is rich in regulatory factors 
that are also active in the vasculature, such as osteopontin 
and MGP, they may be released into the circulation dur-
ing bone resorption.37 Cells with both osteoblastic and os-
teoclastic potential have been described in vascular tissues, 
and bone-related proteins have been identified in calcified 
arterial lesions.38 Alternatively, causal factors driving both 
vascular calcification and bone loss in CKD may exist, sup-
ported by the several risk factors common in both disorders, 
including vitamin K and D abnormalities, chronic inflamma-
tion, dyslipidaemia, ageing, hyperparathyroidism, hyperho-
mocysteinemia, oestrogen deficiency and oxidative stress.37 
As discussed in the 2006 KDIGO guidelines, the term CKD-
MBD should not solely be used to describe the syndrome of 
biochemical and bone abnormalities observed in CKD, but 
also encompasses the extra-skeletal calcification occurring in 
these patients resulting from derangement of complex sys-
tems biology involving the kidney, skeleton and cardiovas-
cular system.39

Although a causal relationship has not been conclusively 
established, CKD-MBD, and particularly hyperphosphate-
mia, represents one of the major triggers for vascular cal-
cification.19 Hyperphosphatemia stimulates both PTH and 
fibroblast growth factor-23 (FGF23) synthesis, subsequently 
inducing phosphaturia through an effect on type II renal 
sodium-dependent phosphate transporters.18,19 However, 
abnormal levels of PTH and FGF23 may be associated with 
vascular calcification even before the development of hy-
perphosphatemia. High levels of PTH and FGF23 in CKD 
promote bone resorption, which may further increase serum 

calcium-phosphate product in a vicious circle.40 When vas-
cular smooth muscle cells (VSMC) are exposed to a calcium 
and phosphorus-rich environment they undergo osteogenic 
differentiation becoming bone-formative cells, namely os-
teoblast/chondrocyte-like cells.18 These cells lose their con-
tractile properties but produce a collagen matrix and form 
calcium- and phosphorus-rich matrix vesicles, which in turn 
may initiate the mineralization of the vascular wall.18

At the same time, a dynamic bone disease, characterized 
by markedly reduced bone formation rate and low PTH (low 
bone remodelling), may also be associated with ectopic cal-
cification of vessels valves and heart.41 It seems that osteo-
chondrogenic differentiation of VSMC depends on higher 
expression of type III sodium-dependent phosphate trans-
porters (Pit-1 and Pit-2) hence contributing to vascular calci-
fication in CKD-MBD. There is experimental evidence that 
Klotho, a co-receptor relevant for canonical FGF23 signal-
ling, confers anti-calcification effects by inducing phospha-
turia, preserving GFR and even through a direct effect on soft 
tissues including the vascular smooth muscle.23 Thus, dereg-
ulations in bone and mineral metabolism may induce both 
bone disease and vascular calcification in CKD. At the same 
time, additional factors such as chronic inflammation, which 
is common in CKD, and also loss of Klotho 42 may adversely 
affect both bone and vasculature.

2.4  |  Inflammation: Driving bone 
disease and calcification in CKD?

In CKD, the presence of so-called uremic micro-inflammation 
has been recognized as an essential pathophysiological con-
stituent, that plays an important role as a contributor to both 
vascular calcification and bone disease.43 A large cohort study 
has disclosed that biomarkers of inflammation such as IL-1β 
(interleukin 1 beta), IL-6 (interleukin 6) and TNF-α (tumour 
necrosis factor alpha) were inversely associated with eGFR 
(estimated glomerular filtration rate) and cystatin-C and posi-
tively with albuminuria,44 indicating a role for inflammation 
on CKD development and progression. The mechanisms 
linking inflammation with vascular calcification are com-
plex and multifactorial. A great amount of inflammatory me-
diators, such as oxidative stress, carbonyl stress, C-reactive 
protein and cytokines may directly stimulate vascular calci-
fication. Moreover, inflammation decreases the calcification 
inhibitor fetuin-A.45 Importantly, the pro-inflammatory cy-
tokines TNF-α, receptor activator of NF-κB ligand (RANKL) 
and interleukins 1 and 17 also have adverse effects on bone.46 
TNF exerts an effect on osteoclastogenesis by acting directly 
on osteoclast precursors while IL-6 can upregulate RANKL 
and thus indirectly support osteoclast formation via the inter-
action with mesenchymal cells.46 A histomorphometric study 
performed by Viaene et al47 in end-stage kidney disease 
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(ESKD) patients showed that inflammatory markers IL-6 
and TNF- α were independently associated, respectively, 
with aortic calcification and low bone area, emphasizing 
the role of micro-inflammation in the bone-vascular axis in 
CKD. The source of chronic inflammation remains unclear in 
many CKD patients, and its aetiology may be multifactorial. 
Accumulating evidence points towards the gastrointestinal 
tract as a major source of inflammation in CKD.48

3  |   GUT MICROBIOTA IN 
CHRONIC KIDNEY DISEASE

Experimental and clinical evidence points towards a distinct 
intestinal microflora composition in CKD.4 It is well known 
that a healthy, balanced colonic microbiota is primarily com-
posed of saccharolytic bacteria (ie carbohydrates fermenting 
bacteria).3 In the context of a reduced GFR, the intestine is 
exposed to uraemia. The prolonged exposure to high con-
centrations of urea causes overgrowth in urease containing 
bacterial families,49 accounting for greater ammonia genera-
tion and further increased intestinal pH. Moreover, in ESKD, 
there is also an increased concentration of uric acid and ox-
alate secretion in the gastrointestinal (GI) tract since colon 
becomes their main route of excretion,4 accounting for an 
increasing abundance of uricase producing microbes.49 The 
aforementioned increased proliferation of proteolytic bacte-
rial species (ie uricase and urease containing species) confers 
gut dysbiosis in CKD. A recent systematic review showed 
that patients in any stage of CKD, ranging from early GFR 
decline to end-stage kidney disease, presented with substan-
tial differences in gut microbiota composition, compared to 
healthy individuals.50 However, some differences in micro-
biota composition within the CKD population can also be 
discerned. In early CKD, some beneficial microbial families 
such as Ruminococcaceae and Lachnospiraceae, which are 
enriched in the general population and capable of degrad-
ing polysaccharides, were observed.50 In advanced CKD, 
families associated with the production of uremic toxins are 
considerably more common, whereas families linked with 
production of SCFAs are markedly reduced.50 These find-
ings suggest that the microbiota in early CKD may be closer 
to healthy individuals, whereas in advanced CKD dysbiosis 
is more common.

Gut dysbiosis promoted by the uraemic milieu also ac-
counts for the loss of gut barrier integrity, which in turn 
allows the translocation of living bacteria, endotoxin mole-
cules (lipopolysaccharides), and gut-derived uremic toxins 
into the systemic circulation.51 The increased exposure of 
the host to these components may activate innate immunity 
and systemic inflammation, increasing the ratio of the intes-
tinal T helper 17 (Th17) cells over T regulatory (Treg) cells, 
creating a vicious circle.52,53 Moreover, the aforementioned 

proteolytic bacterial species amplified in CKD produce 
uraemic toxins generated through protein fermentation in 
the intestine,54 including p-cresyl sulphate (P-CS), indoxyl 
sulphate (IS) and trimethylamine N-oxide (TMAO),54 all of 
which have pro-inflammatory effects.54 Alterations in micro-
biota composition also comprise the depletion of protective 
microbial species including the ones capable of producing 
anti-inflammatory and cytoprotective molecules such as 
short-chain fatty acids (SCFA).49

In addition to uraemia, other aspects that further contrib-
ute to the changes in gut microbiota composition in CKD 
patients include diet and medications.55 Protein restriction is 
a major component of the ‘renal diet’, which not only aims 
to preserve renal function, but also to reduce uremic toxin 
production.55 Moreover, in order to avoid hyperkalemia and 
oxalate overload, dietary recommendations include limiting 
the consumption of fruits and vegetables, food groups that 
are also rich in fibre, hence interfering with symbiosis in GI 
tract.56 Instead of focussing on specific nutrients, some au-
thors have investigated the potential role of healthy dietary 
patterns, such as vegetarian and Mediterranean diet, upon 
gut microbiota composition in CKD.57,58 A cross-sectional 
study has disclosed that vegetarian haemodialysis patients 
presented lower levels of IS and P-CS when compared to 
omnivorous patients.57 The higher fibre and reduced amount 
of animal protein of a vegetarian diet may account for such 
beneficial effects. The Mediterranean diet is characterized by 
providing a favourable ratio of protein-to-carbohydrate in-
take for gut microbiota, since it is mainly composed of whole 
grains, nuts, fruits and vegetables, with modest intake of fish 
and dairy products and low intake of red meat. Although this 
dietary pattern did not reduce uraemic toxin production in 
CKD patients,58 it was able to increase healthy gut microbi-
ota constituents and SCFA production in healthy subjects.55 
Chronic intestinal constipation, another frequent condition in 
CKD, might also influence the intestinal microflora.59,60

Chronic kidney disease and its frequent comorbidities 
leads to polypharmacy (defined as the continuous use of five 
or more medications per day) in 80% of patients, of whom 
20% use >10 different medications per day.61 Many drugs 
have documented impact on gut microbiota composition.62-69 
For example, phosphate binders can affect gut microbiota 
by impairing vitamin and phosphate absorption.62 Besides 
affecting microbiota, calcium-based phosphate binders may 
further increase the risk of extra-skeletal calcifications by in-
ducing a rise in serum calcium levels or reducing intestinal 
absorption of vitamin K2.62 A recent review has reported ad-
verse effects of oral iron supplementation on gut microbiota 
composition, gut metabolome and intestinal health, which 
in turn may result in increased production of uremic toxins 
in CKD.64 The frequent use of antibiotics by CKD patients 
does not only impact the target pathogen but also commensal 
gut bacteria.63 Proton-pump inhibitors (PPI), another class of 
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medications commonly used by CKD patients, have been as-
sociated with important changes in gut microbiome because 
of long-term reduction of gastric acid secretion and hypo-
chlorhydria.65-67 Finally, immunosuppression therapy after 
kidney transplantation can induce profound alterations in gut 
microbiota composition.65,68

Interestingly, deregulations in gut microbiota may con-
tribute to vascular and bone disease in CKD patients (the 
‘gut-vascular-bone axis’), among others through a metabolic 
shift from a predominant saccharolytic to a proteolytic fer-
mentation pattern, an altered intestinal barrier function and 
impaired vitamin K status.69

4  |   GUT-VASCULAR-BONE AXIS 
IN CKD

Several factors may connect gut abnormalities with vascular 
calcification and bone disease in CKD patients; these include 
uraemic toxins, TMAO, vitamin K and SCFA.

4.1  |  Uremic toxins

The uremic toxins P-CS and IS originate from intestinal mi-
crobial metabolization of tyrosine/phenylalanine and tryp-
tophan, respectively.10 After absorption by colonic mucosa, 
these compounds are conjugated with sulphate in the liver to 
IS and P-CS, which are either bound to albumin or circulate 
in free forms.10,54 In CKD, the augmented microbial produc-
tion and increased intestinal permeability both contribute 
to progressive accumulation of serum uremic toxins.54,70 
Conventional haemodialysis is not able to efficiently remove 
IS due to its high binding affinity to albumin in plasma.71 
Higher levels of both P-CS and IS are associated with ac-
celerated CKD progression and cardiovascular disease.72,73 
In CKD patients, plasma IS concentrations can be 100-fold 
higher than healthy individuals.74 This disproportionate 
amount of plasmatic uremic toxins prompts the production 
of free radicals in both renal cells and VSMC through oxi-
dative stress and inflammation, causing tissue injury.75 IS 
induces the expression of osteoblast-specific proteins and 
aortic wall calcification and thickening in Dahl salt-sensitive 
hypertensive rats.76 In line, IS has been shown to promote 
a phenotypic switch of vascular smooth muscular cells 
(VSMC) from a contractile to an osteogenic phenotype.77 An 
experimental study has demonstrated that a concentration of 
IS comparable to that observed in ESKD patients was able to 
cause VSMC proliferation in rats.78 In vitro, P-CS may act 
as a pro-osteogenic and procalcific toxin.79 In a more recent 
elegant in vivo study, long-term exposure to IS and P-CS 
significantly increased calcification of the aorta and periph-
eral arteries of CKD rats.80 Jing et al 81 demonstrated that 

serum P-CS triggers monocyte-endothelial cell interaction in 
vitro through increased production of reactive oxygen spe-
cies. Additionally, in vivo, increased P-CS levels promoted 
atherogenesis in 5/6-nephrectomized apoEL/L mice, com-
pared with controls.81 Moreover, the observed activation of 
inflammation and coagulation signalling pathways in aorta 
preceding the calcification, implicated these signalling path-
ways in toxin-induced arterial calcification.80

Only a handful of clinical studies have investigated the 
association between uremic toxins and vascular calcification 
in CKD. Barreto et al73 have disclosed a positive association 
between IS serum levels and pulse wave velocity and aor-
tic calcification in different stages of CKD, with IS being a 
powerful predictor of overall and cardiovascular mortality. 
Subsequently, the same group demonstrated an association 
between P-CS and vascular calcification in CKD patients, 
suggesting P-CS levels as predictors of overall and cardio-
vascular death.72 Rossi et al found progressively increased 
levels of total and free serum IS and P-CS in more advanced 
stages of CKD.82 Furthermore, total and free serum IS and 
P-CS were independently associated with structural and 
functional markers of cardiovascular disease, such as carotid 
intima-media thickness (cIMT), and endothelial function.82 
Among haemodialysis (HD) patients, PC-S levels were asso-
ciated with high carotid-femoral pulse wave velocity (PWV) 
and seemed to be predictors of higher arterial stiffness in 
ESKD.83 In line, a study in HD patients demonstrated in-
creased levels of serum P-CS in patients with carotid athero-
sclerotic plaque (CAP), and reported a positive correlation 
with higher total plaque area.81 Moreover, P-CS levels were 
independently associated with the incidence and progression 
of CAP, and promoted induction of inflammatory factors and 
adhesion molecule expression in endothelial cells and macro-
phages.81 Finally, a large cohort study of children with CKD 
also found significant associations between a higher IS level 
and higher cIMT and progression of PWV, independent of 
other risk factors.84 It is worth mentioning that all these data 
derive from observational studies, requiring further confir-
mation in prospective intervention studies in humans.

Although little is known on the effects of uraemic tox-
ins on bone health in CKD patients, emerging evidence 
indicates that IS may inhibit osteoclast differentiation and 
PTH signalling.85,86 Moreover, several in vitro studies have 
disclosed that IS jeopardizes the differentiation of mesen-
chymal stem cells to osteoblasts, inhibit osteoblast prolif-
eration, bone mineralization, alkaline phosphatase activity 
and expression of bone formation-related genes.87,88 A study 
in parathyroidectomized rats demonstrated that IS-induced 
low bone turnover may be due to mechanisms unrelated 
to skeletal resistance to PTH.89 Treatment of mesenchymal 
stem cells (MSC) with high concentrations of uremic tox-
ins, namely P-CS or IS, during osteogenic differentiation 
promoted down-regulation of collagen type I, reduction 
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in alkaline phosphatase activity and impairment of MSC 
mineralization.90 These results reinforce that uraemic tox-
ins negatively influence osteogenesis. The resistance to 
PTH effects on bone in CKD setting is well recognized, 
although the underlying mechanisms have not been fully 
elucidated yet. In line, Nii-Kono et al 91 demonstrated that 
higher serum IS promotes PTH resistance in osteoblasts. In 
an experimental model of CKD, IS and other uremic tox-
ins changed bone composition.92 In haemodialysis patients, 
IS was inversely correlated with alkaline phosphatase and 
bone-specific alkaline phosphatase, irrespective of intact 
PTH, suggesting that IS may be implicated in skeletal PTH 
resistance in uraemia.93 Furthermore, increased levels of 
IS prompt 24-hydroxylase (CYP24A1) activity, causing 
25-hydroxyvitamin D and active vitamin D degradation, 
thereby reducing calcitriol (1,25-dihydroxycholecalciferol) 
levels.94

Altogether, these findings suggest that patients with 
CKD may develop low-turnover bone disease by a direct 
action of IS on both osteoblast and osteoclast precursors 
to suppress bone formation and bone resorption. However, 
further studies are needed to elucidate the mechanisms of 
action of uraemic toxins in bone disease progression in 
uraemia.

4.2  |  Trimethylamine-N-oxide

Trimethylamine N-oxide is derived from metabolization of 
trimethylamine (TMA)-containing substrates, such as L-
carnitine, choline and betaine, by intestinal bacteria.95 These 
compounds are found in a variety of foods, including those 
of animal origin such as red meat, eggs, milk, fish, poultry 
and shellfish, and those of plant origin, such as green vegeta-
bles, whole grains, spinach and beets.95 Bacterially produced 
TMA is efficiently absorbed into the circulation and metabo-
lized by the hepatic enzyme flavin monooxygenase to form 
TMAO.95

In previous large clinical studies, high serum levels 
of TMAO have already been associated with cardiovas-
cular diseases,96-98 besides promoting atherosclerosis in 
rodents.99 It is well established that CKD patients, with dif-
ferent levels of renal function, have increased production 
and serum levels of TMAO due to altered gut microbiota 
and reduced renal function.98,100,101 A recent well-designed 
study involving haemodialysis patients showed higher 
TMAO levels in patients with aortic calcification, com-
pared with patients without calcification, and a positive 
association between serum TMAO and aortic calcifica-
tion scores.102 In cultured VSMCs, TMAO promoted cal-
cium/phosphate-induced calcification, and in an animal 
CKD model, TMAO promoted vascular calcification.102 
Furthermore, reducing TMAO levels by using antibiotics 

ameliorated vascular calcification in CKD rats.102 The au-
thors have also demonstrated that TMAO promotes vascu-
lar calcification and osteogenic differentiation of VSMCs 
in the context of CKD via NLRP3 (nucleotide-binding 
domain, leucine-rich-containing family, pyrin domain-
containing-3) and NF-κB (nuclear factor κB) signalling 
pathways.102

Recent studies investigated the role of TMAO in bone 
health and in age-related osteoporosis 103 and type 2 dia-
betes,104 but data in CKD patients are currently lacking. 
Interestingly, TMAO treatment in vitro promoted adipogenic 
differentiation and inhibited the osteogenic differentiation 
of bone marrow mesenchymal stem cells (BMSCs) by up-
regulating the NF-κB signalling pathway.105 Such observa-
tions highlight the importance of investigating the role of gut 
microbiota of CKD patients on serum levels of TMAO and 
whether it impacts on vascular calcification and bone health.

4.3  |  Vitamin K

Vitamin K, a fat-soluble vitamin, plays a role in bone metab-
olism and vascular calcification and its deficiency is common 
in CKD.106 Subclinical vitamin K deficiency is also observed 
in CKD patients,107-109 further supporting an increased risk 
vascular calcification and bone demineralization.110 It exists 
in two main forms: vitamin K1 (phylloquinone, PK), syn-
thesized by plants and found in green leafy vegetables; and 
vitamin K2 (menaquinone-n, MK), mainly synthesized by 
bacteria, can be found in yogurts and other fermented foods 
besides being produced by gut microbes.111 Bacterial MK 
present in the colon are mainly MK-10 and MK-11, synthe-
sized by Bacteroides, MK-8 by Enterobacteria, MK-7 by 
Veillonella and MK-6 by Eubacterium lentum.112 Usually, 
up to 90% of total vitamin K intake comes from PK, with 10 
to 25% deriving from MK.113 Yet, some authors consider that 
even small amounts of vitamin K2 derived from intestinal 
bacteria can have a significant impact on health.114

Diets poor in potassium (reduced leafy green vegetables 
rich in K1) and low in phosphate (reduced dairy products 
rich in K2) normally prescribed for CKD patients, thus rep-
resent a potential cause of vitamin K deficiency.56 Besides 
dietary factors and the use of medications such as vitamin K 
antagonists and phosphate binders,107,109,115 the altered gut 
microbiota composition in CKD patients may also contribute 
to worsening of vitamin K deficiency in this population. A 
recent study in patients with Crohn's disease has shown a re-
duction in the diversity of gut bacteria in vitamin K-deficient 
patients.114 A well-designed experimental study has shown 
that mice with disrupted microbiota displayed modified 
abundance of microbial genes responsible for the synthesis 
of vitamin K.116 In addition, the disruption of gut microbi-
ome was associated with decreased crystallinity and impaired 
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bone tissue strength.116 The potential role of gut microbiota 
composition in relationship with vitamin K status in the CKD 
setting remains to be addressed.

Vitamin K-dependent proteins (VKDP), including os-
teocalcin (OC) and matrix Gla-protein (MGP), are import-
ant regulators of bone mineralization.117 OC is exclusively 
synthesized by osteoblasts and binds to calcium ions and 
hydroxyapatite crystals exerting regulatory effects on bone 
mineral matrix.117 MGP is produced by VSMC and chon-
drocytes to prevent ectopic calcification.106,117 Reduced 
serum levels of carboxylated MGP appear to be a noticeably 
contributor to the development and progression of vascular 
calcification.118 Furthermore, by stimulating the xenobi-
otic receptor on osteoblasts, vitamin K can alter bone min-
eralization processes.119 Given that vitamin K is essential 
to functionalize a series of proteins including OC, the most 
abundant non-collagenous protein in bone matrix,119 the 
lack of matrix-bound OC in bone turns it more fragile and 
susceptible to fracture.119 Reduced intake of vitamin K and 
functional vitamin K deficiency, as determined by circulat-
ing biomarkers, such as dephosphorylated-uncarboxylated 
MGP (dp-ucMGP) or undercarboxilated OC (unOC), are 
associated with low BMD and increased risk of fractures 
in general population 120 as well as in CKD patients.121 An 
observational study which evaluated the impact of vitamin 
K upon vascular calcification and bone health in haemodi-
alysis patients revealed that vitamin K1 deficiency was the 
strongest predictor of vertebral fractures, while MK4 defi-
ciency was a predictor of aortic calcification and MK7 de-
ficiency a predictor of iliac calcification.121 Several studies 
have found positive associations between vascular calcifi-
cation and vitamin K deficiency.110,122,123 A recent cohort 
study with ESKD patients has disclosed that dp-ucMGP 
was strongly associated with coronary artery calcium 
(CAC) and aortic valve calcium; however, a stepwise re-
gression analysis revealed that dp-ucMGP was not an inde-
pendent determinant of vascular calcification. At the same 
time, a randomized clinical trial has shown that 12 months 
of vitamin K2 supplementation did not improve vascular 
stiffness in non-dialysis CKD patients, and this was similar 
in an updated meta-analysis.124 These findings suggest a 
complex and yet unclarified interconnection between vita-
min K deficiency, bone disease and vascular calcification. 
Six randomized clinical trials to investigate the effects of 
vitamin K supplementation upon vascular calcification in 
haemodialysis patients are ongoing.125

4.4  |  Short-chain fatty acids

Short-chain fatty acids are the products of bacterial fermen-
tation of non-digestible carbohydrates in the colon, such as 
dietary fibres and resistant starches.126 SCFA account for 2 to 

10% of the total energy consumption in humans and serve as 
energy source for the colonic epithelial cells and the microbi-
ota.126 The most abundant SCFA are acetate, propionate and 
butyrate, mainly produced by Firmicutes and Bacteroides, 
and rapidly absorbed by the intestinal epithelium through 
specific transporters or diffusion.3,126 The benefits of SCFA 
are not limited to the intestine, where they are produced.127 
SCFA seems to contribute to the improvement of vascular 
phenotypes.75 Some studies have shown immunomodulatory 
capacities of SCFA. Inflammatory cells such as neutrophils, 
macrophages, dendritic cells and T cells are responsive to 
SCFA treatment, in line with their anti-inflammatory effects 
in a wide range of inflammatory diseases, and reduction of 
vascular calcification,128 although studies in this field are still 
limited.

Recent emerging evidence supports beneficial effects 
of SCFA on bone health.129,130 Mice treated with SCFA for 
8 weeks showed significantly increased bone mass and de-
creased bone resorption.129 In the same study, the authors 
also investigated the influence of a fibre-rich diet, which 
increased SCFA levels in the cecum and serum, upon bone 
health,129 and concluded that the diet helped to further in-
crease bone mass. Zhou et al130 have reported a direct asso-
ciation between dietary fibre consumption and BMD mainly 
in men and among participants with lower genetically deter-
mined gut microbiota-derived SCFA propionate.

As aforementioned, the gut microbiota of CKD patients 
is characterized by a higher abundance of bacterial species 
containing proteases compared to species containing en-
zymes that degrade fibre and generate SCFA,49 besides a low 
fibre intake due to renal dietary restrictions.56 Serum butyrate 
levels were threefold lower in Chinese CKD patients com-
pared to healthy controls.131 Moreover, an inverse correlation 
between butyrate and renal function has been reported.131 
In contrast, Terpstra et al132 could not find a reduction in 
butyrate-producing species nor in butyrate production capac-
ity in a sample of Dutch CKD patients, although total SCFA 
was not measured. Thus, although SCFA could be another 
link in the gut-bone-vascular axis, the relevance in CKD pa-
tients deserves further study.

5  |   THERAPEUTIC 
INTERVENTIONS

Individualized approaches pursuing the re-establishment of 
a symbiotic status of the gut microbiota in CKD may benefit 
the gut-vascular-bone axis in CKD, hence helping to miti-
gate vascular calcification and bone mineral disease. These 
targets may be accomplished through dietary modifications, 
mainly by increasing fibre intake, administrating probiotics, 
prebiotics or symbiotics and through the supplementation of 
vitamin K, when necessary.
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Probiotics are defined by the Food and Agriculture 
Organization of the United Nations (FAO) and the World 
Health Organization (WHO) as ‘living organisms that pro-
vide health benefits in the host when consumed in the ap-
propriate quantity’. To date, there are no studies that directly 
investigate the effects of probiotics, prebiotics or symbiotics 
supplementation upon vascular calcification and bone health 
in CKD patients. However, a recent randomized controlled 
trial with non-dialysis CKD patients has shown that a three-
month supplementation with fructooligosaccharides (FOS) 
did not affect arterial stiffness, but lowered circulating levels 
of IL-6 and preserved endothelial function in patients with 
less damaged endothelium.133

Furthermore, some studies indicate decreased uremic 
toxin production in response to probiotics in experimental 
and clinical CKD, with ameliorated biomarkers of inflam-
mation and oxidative stress.134 On the other hand, Borges 
et al135 have found in a recent randomized, double-blind 
trial in haemodialysis patients a significant increase in 
IS plasma levels after three months of probiotic supple-
mentation, which could be a consequence of increased 
permeability of the gut barrier. These findings highlight 
that probiotic therapy should be further explored but used 
with caution in CKD patients. Prebiotics, non-digestible 

carbohydrates that act stimulating the growth and activity 
of beneficial bacteria in the colon, have also been asso-
ciated with reduction of uremic toxins and inflammatory 
markers in haemodialysis patients.136,137 On the other hand, 
in non-dialysis-dependent CKD patients, supplementation 
of FOS for three months did not lead to changes in uremic 
toxins levels.138 Likewise, symbiotics, which are defined as 
the combination of both prebiotics and probiotics, reduced 
levels of serum P-CS in CKD patients.134

Interestingly, AST-120, an orally administered spherical 
carbon adsorbent approved for clinical use in CKD patients 
in Japan and Asia, was able to inhibit the hepatic synthe-
sis of indoxyl sulphate by blocking the gastrointestinal 
absorption of its biochemical precursor indole in an experi-
mental study.139 Moreover, serum P-CS levels were signifi-
cantly reduced by AST-120 in an animal model.140 More 
recently, mice with adenine-induced kidney damage that 
were treated with AST-120 did not have p-cresol in faecal 
content.141 In addition, AST-120 reduced the abundance 
of Erysipelotrichaceae uncultured and Clostridium sensu 
stricto, species that are involved in p-cresol production.141 
These preclinical studies set the stage for studies in humans. 
An initial study reported that AST-120 decreased serum 
levels of indoxyl sulphate in a dose-dependent manner in 

T A B L E  1   Potential factors acting as promoters or inhibitors of vascular calcification in the context of CKD and gut dysbiosis

CKD Gut dysbiosis

VC promoters TMAO 101 TMAO 144

Inflammatory cytokines 45,47 Inflammatory cytokines 145

Oxidative stress 13 Oxidative stress 146

Indoxyl-sulphate 72,77,81,83

P-cresyl-sulphate 71,81,82

BMPs 13

Secondary CPPs 43

Serum calcium 13,19

Serum phosphate 13,19

Serum Ca-P product 13,19

Serum PTH 13,41

Serum FGF-23 13

Runx2 19

VC inhibitors Vitamin K 120 Vitamin K 110,121,122

SCFA 74 SCFA 127

Klotho 13,19

Osteoprotegerin 13,19

Osteopontin 19

MGP 43

Pyrophosphate 19

Fetuin-A 13,19

Abbreviations: BMP, bone morphogenetic protein; Ca, calcium; CKD, chronic kidney disease; CPP, calciprotein particles; FGF-23, fibroblast growth factor-23; MGP, 
matrix Gla-protein; P, phosphorus; PTH, parathyroid hormone; SCFA, short-chain fatty acids; TMAO, trimethylamine-N-oxide; VC, vascular calcification.
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patients with moderate to severe CKD.142 This was fol-
lowed by a more recent large, multinational, randomized 
clinical trial that unfortunately could not show a beneficial 
effect of AST-120 on the progression of CKD.143 An ongo-
ing clinical trial aims to study the effects of oral absorbent 
and probiotics on vascular function of CKD patients.144 
Overall, although some studies show promising effects of 
interventions aiming to promote gut health on intermediate 
endpoints, other studies show null results or even safety 
signals. This highlights the need for further studies to find 
efficient interventions, to identify relevant specific target 
(sub-)populations, and to demonstrate effects on clinically 
relevant (cardiovascular and bone) outcomes.

6  |   CONCLUSIONS AND FUTURE 
PERSPECTIVES

In conclusion, CKD and gut dysbiosis share abnormalities 
in factors that promote or inhibit vascular calcification, as 
summarized in Table 1. Although a clear interplay exists be-
tween gut microbiota, bone health and vascular calcification 
(Figure 1), most studies to date focus on associations between 

two of these factors, but did not analyse all factors together. 
Therefore, there is still much to learn regarding the pathways 
that link gut microbiota to both bone and vascular health. To 
reach this aim, large, well-designed cohort studies address-
ing microbiome composition in relation to, preferably, both 
vascular calcification and bone disease in the setting of CKD 
are warranted.

Another major outstanding question, as also addressed in 
this review, is whether interventions targeting the microbi-
ome improve cardiovascular and bone health in CKD. The 
difficulties regarding such studies rely among others on the 
lack of feasible and practical methods of evaluating changes 
in gut microbiome over time in a clinical trial. While it is im-
portant to address dietary and/or pro/prebiotic interventions 
modulating gut microbiota in trials in CKD patients aiming 
to assess their impact on gut metabolites (uremic toxins, 
TMAO, SCFA), it would be even more important to focus 
on markers of bone/vascular disease like fracture risk and 
CAC. Moreover, since current data seem to indicate heter-
ogenic efficacy of interventions targeting gut health regard-
ing intermediate outcomes such as uremic toxins, it would 
be highly relevant to identify subgroups of patients that are 
potentially more susceptible to positive treatment response. 

F I G U R E  1   The uraemic milieu is one of the main contributors for gut dysbiosis in CKD. As renal function declines, the colon replaces 
the kidney as the primary site of excretion of urea and uric acid, which become alternative substrates for the gut bacteria, instead of indigestible 
complex carbohydrates. Besides, renal diet (limited intake of fibre-rich foods, eg fruits and vegetables) and polypharmacy (ie phosphate binders, 
antibiotics, iron supplementation, PPI, immunosuppressants) may account for altered gut dysbiosis in CKD setting. The hypothesis upon gut-
vascular-bone axis in CKD revolves around the augmented exposure of the referred tissues to uremic toxins, such as indoxyl sulphate (IS) and 
p-cresyl sulphate (P-CS), TMAO (Trimethylamine-N-oxide) and pro-inflammatory cytokines given the presence of a disrupted intestinal barrier. In 
addition, the reduced production of SCFA (short-chain fatty acids) and the deficiency of vitamin K might also exacerbate this mechanism
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Although there may be a long road ahead, ultimately, cor-
recting derangements in gut microbiota may be a promising 
approach to improve both bone and cardiovascular health in 
CKD patients.
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