752 research outputs found
The Gromov Norm of the Product of Two Surfaces
We make an estimation of the value of the Gromov norm of the Cartesian
product of two surfaces. Our method uses a connection between these norms and
the minimal size of triangulations of the products of two polygons. This allows
us to prove that the Gromov norm of this product is between 32 and 52 when both
factors have genus 2. The case of arbitrary genera is easy to deduce form this
one.Comment: The journal version contains an error that invalidates one direction
of the main theorem. The present version contains an erratum, at the end,
explaining thi
The Complexity of Three-Way Statistical Tables
Multi-way tables with specified marginals arise in a variety of applications
in statistics and operations research. We provide a comprehensive complexity
classification of three fundamental computational problems on tables:
existence, counting and entry-security.
One major outcome of our work is that each of the following problems is
intractable already for "slim" 3-tables, with constant and smallest possible
number 3 of rows: (1) deciding existence of 3-tables with given consistent
2-marginals; (2) counting all 3-tables with given 2-marginals; (3) finding
whether an integer value is attained in entry (i,j,k) by at least one of the
3-tables satisfying given (feasible) 2-marginals. This implies that a
characterization of feasible marginals for such slim tables, sought by much
recent research, is unlikely to exist.
Another important consequence of our study is a systematic efficient way of
embedding the set of 3-tables satisfying any given 1-marginals and entry upper
bounds in a set of slim 3-tables satisfying suitable 2-marginals with no entry
bounds. This provides a valuable tool for studying multi-index transportation
problems and multi-index transportation polytopes
Algebraic Unimodular Counting
We study algebraic algorithms for expressing the number of non-negative
integer solutions to a unimodular system of linear equations as a function of
the right hand side. Our methods include Todd classes of toric varieties via
Gr\"obner bases, and rational generating functions as in Barvinok's algorithm.
We report polyhedral and computational results for two special cases: counting
contingency tables and Kostant's partition function.Comment: 21 page
Not all simplicial polytopes are weakly vertex-decomposable
In 1980 Provan and Billera defined the notion of weak -decomposability for
pure simplicial complexes. They showed the diameter of a weakly
-decomposable simplicial complex is bounded above by a polynomial
function of the number of -faces in and its dimension. For weakly
0-decomposable complexes, this bound is linear in the number of vertices and
the dimension. In this paper we exhibit the first examples of non-weakly
0-decomposable simplicial polytopes
FPTAS for optimizing polynomials over the mixed-integer points of polytopes in fixed dimension
We show the existence of a fully polynomial-time approximation scheme (FPTAS)
for the problem of maximizing a non-negative polynomial over mixed-integer sets
in convex polytopes, when the number of variables is fixed. Moreover, using a
weaker notion of approximation, we show the existence of a fully
polynomial-time approximation scheme for the problem of maximizing or
minimizing an arbitrary polynomial over mixed-integer sets in convex polytopes,
when the number of variables is fixed.Comment: 16 pages, 4 figures; to appear in Mathematical Programmin
On the Complexity of Hilbert Refutations for Partition
Given a set of integers W, the Partition problem determines whether W can be
divided into two disjoint subsets with equal sums. We model the Partition
problem as a system of polynomial equations, and then investigate the
complexity of a Hilbert's Nullstellensatz refutation, or certificate, that a
given set of integers is not partitionable. We provide an explicit construction
of a minimum-degree certificate, and then demonstrate that the Partition
problem is equivalent to the determinant of a carefully constructed matrix
called the partition matrix. In particular, we show that the determinant of the
partition matrix is a polynomial that factors into an iteration over all
possible partitions of W.Comment: Final versio
Vertices of Gelfand-Tsetlin Polytopes
This paper is a study of the polyhedral geometry of Gelfand-Tsetlin patterns
arising in the representation theory \mathfrak{gl}_n \C and algebraic
combinatorics. We present a combinatorial characterization of the vertices and
a method to calculate the dimension of the lowest-dimensional face containing a
given Gelfand-Tsetlin pattern.
As an application, we disprove a conjecture of Berenstein and Kirillov about
the integrality of all vertices of the Gelfand-Tsetlin polytopes. We can
construct for each a counterexample, with arbitrarily increasing
denominators as grows, of a non-integral vertex. This is the first infinite
family of non-integral polyhedra for which the Ehrhart counting function is
still a polynomial. We also derive a bound on the denominators for the
non-integral vertices when is fixed.Comment: 14 pages, 3 figures, fixed attribution
On the Computation of Clebsch-Gordan Coefficients and the Dilation Effect
We investigate the problem of computing tensor product multiplicities for
complex semisimple Lie algebras. Even though computing these numbers is #P-hard
in general, we show that if the rank of the Lie algebra is assumed fixed, then
there is a polynomial time algorithm, based on counting the lattice points in
polytopes. In fact, for Lie algebras of type A_r, there is an algorithm, based
on the ellipsoid algorithm, to decide when the coefficients are nonzero in
polynomial time for arbitrary rank. Our experiments show that the lattice point
algorithm is superior in practice to the standard techniques for computing
multiplicities when the weights have large entries but small rank. Using an
implementation of this algorithm, we provide experimental evidence for
conjectured generalizations of the saturation property of
Littlewood--Richardson coefficients. One of these conjectures seems to be valid
for types B_n, C_n, and D_n.Comment: 21 pages, 6 table
Combinatorics and Geometry of Transportation Polytopes: An Update
A transportation polytope consists of all multidimensional arrays or tables
of non-negative real numbers that satisfy certain sum conditions on subsets of
the entries. They arise naturally in optimization and statistics, and also have
interest for discrete mathematics because permutation matrices, latin squares,
and magic squares appear naturally as lattice points of these polytopes.
In this paper we survey advances on the understanding of the combinatorics
and geometry of these polyhedra and include some recent unpublished results on
the diameter of graphs of these polytopes. In particular, this is a thirty-year
update on the status of a list of open questions last visited in the 1984 book
by Yemelichev, Kovalev and Kravtsov and the 1986 survey paper of Vlach.Comment: 35 pages, 13 figure
- …