25 research outputs found
Directed Branched Polymer near an Attractive Line
We study the adsorption-desorption phase transition of directed branched
polymer in dimensions in contact with a line by mapping it to a
dimensional hard core lattice gas at negative activity. We solve the model
exactly in 1+1 dimensions, and calculate the crossover exponent related to
fraction of monomers adsorbed at the critical point of surface transition, and
we also determine the density profile of the polymer in different phases. We
also obtain the value of crossover exponent in 2+1 dimensions and give the
scaling function of the sticking fraction for 1+1 and 2+1 dimensional directed
branched polymer.Comment: 19 pages, 4 figures, accepted for publication in J. Phys. A:Math. Ge
Critical Percolation in Finite Geometries
The methods of conformal field theory are used to compute the crossing
probabilities between segments of the boundary of a compact two-dimensional
region at the percolation threshold. These probabilities are shown to be
invariant not only under changes of scale, but also under mappings of the
region which are conformal in the interior and continuous on the boundary. This
is a larger invariance than that expected for generic critical systems.
Specific predictions are presented for the crossing probability between
opposite sides of a rectangle, and are compared with recent numerical work. The
agreement is excellent.Comment: 10 page
Estimation of the order parameter exponent of critical cellular automata using the enhanced coherent anomaly method.
The stochastic cellular automaton of Rule 18 defined by Wolfram [Rev. Mod.
Phys. 55 601 (1983)] has been investigated by the enhanced coherent anomaly
method. Reliable estimate was found for the critical exponent, based on
moderate sized () clusters.Comment: 6 pages, RevTeX file, figure available from [email protected]
Series expansions of the percolation probability on the directed triangular lattice
We have derived long series expansions of the percolation probability for
site, bond and site-bond percolation on the directed triangular lattice. For
the bond problem we have extended the series from order 12 to 51 and for the
site problem from order 12 to 35. For the site-bond problem, which has not been
studied before, we have derived the series to order 32. Our estimates of the
critical exponent are in full agreement with results for similar
problems on the square lattice, confirming expectations of universality. For
the critical probability and exponent we find in the site case: and ; in the bond case:
and ; and in the site-bond
case: and . In
addition we have obtained accurate estimates for the critical amplitudes. In
all cases we find that the leading correction to scaling term is analytic,
i.e., the confluent exponent .Comment: 26 pages, LaTeX. To appear in J. Phys.
Magnetic Properties of 2-Dimensional Dipolar Squares: Boundary Geometry Dependence
By means of the molecular dynamics simulation on gradual cooling processes,
we investigate magnetic properties of classical spin systems only with the
magnetic dipole-dipole interaction, which we call dipolar systems. Focusing on
their finite-size effect, particularly their boundary geometry dependence, we
study two finite dipolar squares cut out from a square lattice with
and , where is an angle between the direction of the lattice axis
and that of the square boundary. Distinctly different results are obtained in
the two dipolar squares. In the square, the ``from-edge-to-interior
freezing'' of spins is observed. Its ground state has a multi-domain structure
whose domains consist of the two among infinitely (continuously) degenerated
Luttinger-Tisza (LT) ground-state orders on a bulk square lattice, i.e., the
two antiferromagnetically aligned ferromagnetic chains (af-FMC) orders directed
in parallel to the two lattice axes. In the square, on the other
hand, the freezing starts from the interior of the square, and its ground state
is nearly in a single domain with one of the two af-FMC orders. These geometry
effects are argued to originate from the anisotropic nature of the
dipole-dipole interaction which depends on the relative direction of sites in a
real space of the interacting spins.Comment: 21 pages, 13 figures, submitted to Journal of Physical Society Japa
Series expansions of the percolation probability for directed square and honeycomb lattices
We have derived long series expansions of the percolation probability for
site and bond percolation on directed square and honeycomb lattices. For the
square bond problem we have extended the series from 41 terms to 54, for the
square site problem from 16 terms to 37, and for the honeycomb bond problem
from 13 terms to 36. Analysis of the series clearly shows that the critical
exponent is the same for all the problems confirming expectations of
universality. For the critical probability and exponent we find in the square
bond case, , , in the
square site case , ,
and in the honeycomb bond case , . In addition we have obtained accurate estimates for the critical
amplitudes. In all cases we find that the leading correction to scaling term is
analytic, i.e., the confluent exponent .Comment: LaTex with epsf, 26 pages, 2 figures and 2 tables in Postscript
format included (uufiled). LaTeX version of tables also included for the
benefit of those without access to PS printers (note that the tables should
be printed in landscape mode). Accepted by J. Phys.
On surface properties of two-dimensional percolation clusters
The two-dimensional site percolation problem is studied by transfer-matrix
methods on finite-width strips with free boundary conditions. The relationship
between correlation-length amplitudes and critical indices, predicted by
conformal invariance, allows a very precise determination of the surface
decay-of-correlations exponent, , consistent with
the analytical value . It is found that a special transition does
not occur in the case, corroborating earlier series results. At the ordinary
transition, numerical estimates are consistent with the exact value
for the irrelevant exponent.Comment: 8 pages, LaTeX with Institute of Physics macros, to appear in Journal
of Physics
Universality classes of three-dimensional -vector model
We study the conditions under which the critical behavior of the
three-dimensional -vector model does not belong to the spherically
symmetrical universality class. In the calculations we rely on the
field-theoretical renormalization group approach in different regularization
schemes adjusted by resummation and extended analysis of the series for
renormalization-group functions which are known for the model in high orders of
perturbation theory. The phase diagram of the three-dimensional -vector
model is built marking out domains in the -plane where the model belongs to
a given universality class.Comment: 9 pages, 1 figur
Simulations of lattice animals and trees
The scaling behaviour of randomly branched polymers in a good solvent is
studied in two to nine dimensions, using as microscopic models lattice animals
and lattice trees on simple hypercubic lattices. As a stochastic sampling
method we use a biased sequential sampling algorithm with re-sampling, similar
to the pruned-enriched Rosenbluth method (PERM) used extensively for linear
polymers. Essentially we start simulating percolation clusters (either site or
bond), re-weigh them according to the animal (tree) ensemble, and prune or
branch the further growth according to a heuristic fitness function. In
contrast to previous applications of PERM, this fitness function is {\it not}
the weight with which the actual configuration would contribute to the
partition sum, but is closely related to it. We obtain high statistics of
animals with up to several thousand sites in all dimension 2 <= d <= 9. In
addition to the partition sum (number of different animals) we estimate
gyration radii and numbers of perimeter sites. In all dimensions we verify the
Parisi-Sourlas prediction, and we verify all exactly known critical exponents
in dimensions 2, 3, 4, and >= 8. In addition, we present the hitherto most
precise estimates for growth constants in d >= 3. For clusters with one site
attached to an attractive surface, we verify the superuniversality of the
cross-over exponent at the adsorption transition predicted by Janssen and
Lyssy. Finally, we discuss the collapse of animals and trees, arguing that our
present version of the algorithm is also efficient for some of the models
studied in this context, but showing that it is {\it not} very efficient for
the `classical' model for collapsing animals.Comment: 17 pages RevTeX, 29 figures include
Crossover from directed percolation to compact directed percolation
We study critical spreading in a surface-modified directed percolation model
in which the left- and right-most sites have different occupation probabilities
than in the bulk. As we vary the probability for growth at an edge, the
critical exponents switch from the compact directed percolation class to
ordinary directed percolation. We conclude that the nonuniversality observed in
models with multiple absorbing configurations cannot be explained as a simple
surface effect.Comment: 4 pages, Revtex, 5 figures postscrip