35 research outputs found

    Diagonal chromatographic selection of cysteinyl peptides modified with benzoquinones

    Get PDF
    The derivatization of cysteine-containing peptides with benzoquinone compounds is rapid, quantitative and specific in acidic media. The conversion of cysteines into hydrophobic benzoquinone-adducted residues in peptides is used here to alter the chromatographic properties of cysteinyl peptides during liquid chromatography separation. The benzoquinone derivatization is shown to allow the accurate selection of cysteine-containing peptides of bovine serum albumin tryptic digest by diagonal reversed-phase chromatography, which consists of one primary and a series of secondary identical liquid chromatographic separations, before and after a cysteinyl-targeted modification of the peptides by benzoquinone compounds. Figure Diagonal chromatographic selection of cysteinyl peptides modified with benzoquinone

    Thiol-targeted microspray mass spectrometry of peptides and proteins through on-line EC-tagging

    Get PDF
    Modification strategies targeting specific amino acids in proteins are widespread in proteomic analysis. Cysteine residues have received deep consideration in view of their nucleophilic properties and their occurrence in the proteome. A recently developed micro-electrospray emitter for mass spectrometry was used to electrogenerate species reactive towards specific residues in biomolecules. When spraying L-cysteine in the presence of hydroquinone, the thiol cysteine moiety reacts via a 1,4-Michael addition with the benzoquinone electrochemically generated at the electrode. A series of electrogenerated selective electrophiles based on substituted benzoquinones was characterized as tags for L-cysteine. The rate constants pertaining to the addition of L-cysteine onto the benzoquinones were determined through electrochemical techniques. It was shown that the rate constants are primarily dependent on the electronic nature of the substituents. The apparent tagging extents observed for L-cysteine in microspray mass spectrometry experiments were shown to be highly dependent of the ionization efficiencies of the tag. The on-line mass spectrometric electrochemical tagging (EC-tagging) of cysteine residues was studied for peptides. The EC-tagging was tested with the different hydroquinones on an undecapeptide containing one cysteine residue. Methoxycarbonyl-1,4-hydroquinone was shown to be the most efficient probe and revealed to be suitable to count cysteine units in peptides containing up to three cysteines. The number of cysteines corresponds to the number of characteristic mass shifts observed from the unmodified peptide. The identification of bovine serum albumin and human a-lactalbumin digest samples in a peptide mapping strategy were greatly improved by the application of the EC-tagging technique as post-column treatment. Indeed, the determination of cysteine content in the tryptic peptides provides powerful supplementary information to the masses. The tagging method was applied to the determination of four proteins in a model mixture. In parallel, the microspray emitter was characterized as an electrolysis flow cell for the EC-tagging of peptides. The Levich equation was validated as a first approximation for the calculation of the convection-diffusion limiting current in the device. A finite element simulation of the multi-tagging process of peptides was developed to yield the relative distribution and concentration of tags, untagged and tagged species in the microchannel. The main chemical parameters determining the kinetics of the labelling were assessed and discussed considering the microfluidic aspects of the process. The control of the tagging extent allows the simultaneous mass spectrometric analysis of both the unmodified and of the modified peptide(s). This theoretical work has established the range of optimum conditions for the determination of the number of cysteines in peptides containing up to five cysteine groups. The mass spectrometric EC-tagging of cysteine residues in proteins was studied to probe the cysteine environment. An analytical model was developed to calculate rapidly the tagging extent before the spray event. Experiments with unmodified proteins and their chemically reduced forms have highlighted the strong effect of the cysteine site reactivity on the tagging efficiencies. This study has shown relevant parameters for such on-line electrochemical derivatization / mass spectrometric detection strategies. The chemical derivatization of cysteines by benzoquinone reagents was also investigated. These alkylating reagents revealed efficient for diagonal liquid chromatography to isolate cysteinyl peptides by the retention time shifts due to the hydrophobicity of the tags. The work has demonstrated that the inherent electrochemistry of the electrospray can be employed as post column treatment to derivatize cysteinyl biomolecules. Analytical strategies have been developed to take advantage of this electrochemically-controlled modification

    The promise of multi-omics approaches to discover biological alterations with clinical relevance in Alzheimer's disease

    Full text link
    Beyond the core features of Alzheimer's disease (AD) pathology, i.e. amyloid pathology, tau-related neurodegeneration and microglia response, multiple other molecular alterations and pathway dysregulations have been observed in AD. Their inter-individual variations, complex interactions and relevance for clinical manifestation and disease progression remain poorly understood, however. Heterogeneity at both pathophysiological and clinical levels complicates diagnosis, prognosis, treatment and drug design and testing. High-throughput "omics" comprise unbiased and untargeted data-driven methods which allow the exploration of a wide spectrum of disease-related changes at different endophenotype levels without focussing a priori on specific molecular pathways or molecules. Crucially, new methodological and statistical advances now allow for the integrative analysis of data resulting from multiple and different omics methods. These multi-omics approaches offer the unique advantage of providing a more comprehensive characterisation of the AD endophenotype and to capture molecular signatures and interactions spanning various biological levels. These new insights can then help decipher disease mechanisms more deeply. In this review, we describe the different multi-omics tools and approaches currently available and how they have been applied in AD research so far. We discuss how multi-omics can be used to explore molecular alterations related to core features of the AD pathologies and how they interact with comorbid pathological alterations. We further discuss whether the identified pathophysiological changes are relevant for the clinical manifestation of AD, in terms of both cognitive impairment and neuropsychiatric symptoms, and for clinical disease progression over time. Finally, we address the opportunities for multi-omics approaches to help discover novel biomarkers for diagnosis and monitoring of relevant pathophysiological processes, along with personalised intervention strategies in AD

    Cerebrospinal Fluid Proteome Alterations Associated with Neuropsychiatric Symptoms in Cognitive Decline and Alzheimer's Disease

    Full text link
    Although neuropsychiatric symptoms (NPS) are common and severely affect older people with cognitive decline, little is known about their underlying molecular mechanisms and relationships with Alzheimer's disease (AD). The aim of this study was to identify and characterize cerebrospinal fluid (CSF) proteome alterations related to NPS. In a longitudinally followed-up cohort of subjects with normal cognition and patients with cognitive impairment (MCI and mild dementia) from a memory clinic setting, we quantified a panel of 790 proteins in CSF using an untargeted shotgun proteomic workflow. Regression models and pathway enrichment analysis were used to investigate protein alterations related to NPS, and to explore relationships with AD pathology and cognitive decline at follow-up visits. Regression analysis selected 27 CSF proteins associated with NPS. These associations were independent of the presence of cerebral AD pathology (defined as CSF p-tau181/Aβ1-42 > 0.0779, center cutoff). Gene ontology enrichment showed abundance alterations of proteins related to cell adhesion, immune response, and lipid metabolism, among others, in relation to NPS. Out of the selected proteins, three were associated with accelerated cognitive decline at follow-up visits after controlling for possible confounders. Specific CSF proteome alterations underlying NPS may both represent pathophysiological processes independent from AD and accelerate clinical disease progression. Keywords: Alzheimer’s disease; cognitive decline; proteom

    Systemic and central nervous system neuroinflammatory signatures of neuropsychiatric symptoms and related cognitive decline in older people

    Full text link
    BACKGROUND Neuroinflammation may contribute to psychiatric symptoms in older people, in particular in the context of Alzheimer's disease (AD). We sought to identify systemic and central nervous system (CNS) inflammatory alterations associated with neuropsychiatric symptoms (NPS); and to investigate their relationships with AD pathology and clinical disease progression. METHODS We quantified a panel of 38 neuroinflammation and vascular injury markers in paired serum and cerebrospinal fluid (CSF) samples in a cohort of cognitively normal and impaired older subjects. We performed neuropsychiatric and cognitive evaluations and measured CSF biomarkers of AD pathology. Multivariate analysis determined serum and CSF neuroinflammatory alterations associated with NPS, considering cognitive status, AD pathology, and cognitive decline at follow-up visits. RESULTS NPS were associated with distinct inflammatory profiles in serum, involving eotaxin-3, interleukin (IL)-6 and C-reactive protein (CRP); and in CSF, including soluble intracellular cell adhesion molecule-1 (sICAM-1), IL-8, 10-kDa interferon-γ-induced protein, and CRP. AD pathology interacted with CSF sICAM-1 in association with NPS. Presenting NPS was associated with subsequent cognitive decline which was mediated by CSF sICAM-1. CONCLUSIONS Distinct systemic and CNS inflammatory processes are involved in the pathophysiology of NPS in older people. Neuroinflammation may explain the link between NPS and more rapid clinical disease progression

    Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: identification of mitochondrial fission factor as a new AMPK substrate

    Get PDF
    AMP-activated protein kinase (AMPK) is a key cellular energy sensor and regulator of metabolic homeostasis. Although it is best known for its effects on carbohydrate and lipid metabolism, AMPK is implicated in diverse cellular processes, including mitochondrial biogenesis, autophagy, and cell growth and proliferation. To further our understanding of energy homeostasis through AMPK-dependent processes, the design and application of approaches to identify and characterise novel AMPK substrates are invaluable. Here, we report an affinity proteomicstrategy for the discovery and validation of AMPK targets using an antibody to isolate proteins containing the phospho-AMPK substrate recognition motif from hepatocytes that had been treated with pharmacological AMPK activators. We identified 57 proteins that were uniquely enriched in the activator-treated hepatocytes, but were absent in hepatocytes lacking AMPK. We focused on two candidates, cingulin and mitochondrial fission factor (MFF), and further characterised/validated them as AMPK-dependent targets by immunoblotting with phosphorylation site-specific antibodies. A small-molecule AMPK activator caused transient phosphorylation of endogenous cingulin at S137 in intestinal Caco2 cells. Multiple splice-variants of MFF appear to express in hepatocytes and we identified a common AMPK-dependent phospho-site (S129) in all the 3 predominant variants spanning the mass range and a short variant-specific site (S146). Collectively, our proteomic-based approach using a phospho-AMPK substrate antibody in combination with genetic models and selective AMPK activators will provide a powerful and reliable platform for identifying novel AMPK-dependent cellular targets

    An integrative multi-omics approach reveals new central nervous system pathway alterations in Alzheimer's disease

    Get PDF
    BACKGROUND Multiple pathophysiological processes have been described in Alzheimer's disease (AD). Their inter-individual variations, complex interrelations, and relevance for clinical manifestation and disease progression remain poorly understood. We hypothesize that specific molecular patterns indicating both known and yet unidentified pathway alterations are associated with distinct aspects of AD pathology. METHODS We performed multi-level cerebrospinal fluid (CSF) omics in a well-characterized cohort of older adults with normal cognition, mild cognitive impairment, and mild dementia. Proteomics, metabolomics, lipidomics, one-carbon metabolism, and neuroinflammation related molecules were analyzed at single-omic level with correlation and regression approaches. Multi-omics factor analysis was used to integrate all biological levels. Identified analytes were used to construct best predictive models of the presence of AD pathology and of cognitive decline with multifactorial regression analysis. Pathway enrichment analysis identified pathway alterations in AD. RESULTS Multi-omics integration identified five major dimensions of heterogeneity explaining the variance within the cohort and differentially associated with AD. Further analysis exposed multiple interactions between single 'omics modalities and distinct multi-omics molecular signatures differentially related to amyloid pathology, neuronal injury, and tau hyperphosphorylation. Enrichment pathway analysis revealed overrepresentation of the hemostasis, immune response, and extracellular matrix signaling pathways in association with AD. Finally, combinations of four molecules improved prediction of both AD (protein 14-3-3 zeta/delta, clusterin, interleukin-15, and transgelin-2) and cognitive decline (protein 14-3-3 zeta/delta, clusterin, cholesteryl ester 27:1 16:0 and monocyte chemoattractant protein-1). CONCLUSIONS Applying an integrative multi-omics approach we report novel molecular and pathways alterations associated with AD pathology. These findings are relevant for the development of personalized diagnosis and treatment approaches in AD
    corecore