15 research outputs found
Recommended from our members
The physiological responses of cacao to the environment and the implications for climate change resilience. A review
Cacao (Theobroma cacao L.) is a tropical perennial crop which is of great economic importance to the confectionary industry and to the economies of many countries of the humid tropics where it is grown. Some recent studies have suggested climate change could severely impact cacao production in West Africa. It is essential to incorporate our understanding of the physiology and genetic variation within cacao germplasm when discussing the implications of climate change on cacao productivity and developing strategies for climate resilience in cacao production.
Here we review the current research on the physiological responses of cacao to various climate factors. Our main findings are 1) water limitation causes significant yield reduction in cacao but genotypic variation in sensitivity is evident, 2) in the field cacao experiences higher temperatures than is often reported in the literature, 3) the complexity of the cacao/ shade tree interaction can lead to contradictory results, 4) elevated CO2 may alleviate some negative effects of climate change 5) implementation of mitigation strategies can help reduce environmental stress, 6) significant gaps in the research need addressing to accelerate the development of climate resilience. Harnessing the significant genetic variation apparent within cacao germplasm is essential to develop modern varieties capable of high yields in non-optimal conditions. Mitigation strategies will also be essential but to use shading to best effect shade tree selection is crucial to avoid resource competition. Cacao is often described as being sensitive to climate change but genetic variation, adaptive responses, appropriate mitigation strategies and interactive climate effects should all be considered when predicting the future of cacao production. Incorporating these physiological responses to various environmental conditions and developing a deeper understanding of the processes underlying these responses will help to accelerate the development of a more resource use efficient tree ensuring sustainable production into the future
Shade trees and tree pruning alter throughfall and microclimate in cocoa (Theobroma cacao L.) production systems
Shade trees in agroforestry systems protect the understory cocoa from climate extremes. Shade tree pruning manages microclimatic conditions in favor of cocoa production while tree diversity is maintained. Adaptation of pruning has to consider seasonal changes in temperature and precipitation to protect the understory cocoa.
Context
Structural characteristics of tree stands such as species diversity, tree density, and stratification can affect throughfall and microclimate. Pruning changes the canopy and may therefore modulate internal conditions.
Aims
The aim of this study is to assess the environmental growing conditions of cocoa trees.
Methods
We monitored canopy openness and the impact of stand structure on throughfall and microclimate in three cocoa production systems (monoculture, agroforestry, and successional agroforestry) and a natural regrowth in a long-term trial in Bolivia from 2013 to 2015. We further focused on the effect of annual shade tree and cocoa pruning on these variables to evaluate the potential impact of this activity.
Results
Agroforestry systems buffered extreme climate events like temperature fluctuations compared to monocultures but reduced light and throughfall drastically. Spatial variability of throughfall and transmitted light were low under a high and closed shade tree canopy. Shade tree pruning resulted in higher canopy openness, light transmittance, and throughfall, while the buffer function of the agroforestry systems concerning temperature and humidity fluctuations was reduced.
Conclusion
Differences between cocoa production systems regarding throughfall and microclimate were overlain by pruning activities. Cocoa agroforestry systems are temporal dynamic systems. Pruning timing and intensity is pivotal for balancing light and water availability under seasonally varying environmental conditions to conserve micro-environments for cocoa production with less exposure to unfavorable climate