9 research outputs found

    Defective Lamin A-Rb Signaling in Hutchinson-Gilford Progeria Syndrome and Reversal by Farnesyltransferase Inhibition

    Get PDF
    Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare premature aging disorder caused by a de novo heterozygous point mutation G608G (GGC>GGT) within exon 11 of LMNA gene encoding A-type nuclear lamins. This mutation elicits an internal deletion of 50 amino acids in the carboxyl-terminus of prelamin A. The truncated protein, progerin, retains a farnesylated cysteine at its carboxyl terminus, a modification involved in HGPS pathogenesis. Inhibition of protein farnesylation has been shown to improve abnormal nuclear morphology and phenotype in cellular and animal models of HGPS. We analyzed global gene expression changes in fibroblasts from human subjects with HGPS and found that a lamin A-Rb signaling network is a major defective regulatory axis. Treatment of fibroblasts with a protein farnesyltransferase inhibitor reversed the gene expression defects. Our study identifies Rb as a key factor in HGPS pathogenesis and suggests that its modulation could ameliorate premature aging and possibly complications of physiological aging

    The Mutant Form of Lamin A that Causes Hutchinson-Gilford Progeria Is a Biomarker of Cellular Aging in Human Skin

    Get PDF
    Hutchinson-Gilford progeria syndrome (HGPS, OMIM 176670) is a rare disorder characterized by accelerated aging and early death, frequently from stroke or coronary artery disease. 90% of HGPS cases carry the LMNA G608G (GGC>GGT) mutation within exon 11 of LMNA, activating a splice donor site that results in production of a dominant negative form of lamin A protein, denoted progerin. Screening 150 skin biopsies from unaffected individuals (newborn to 97 years) showed that a similar splicing event occurs in vivo at a low level in the skin at all ages. While progerin mRNA remains low, the protein accumulates in the skin with age in a subset of dermal fibroblasts and in a few terminally differentiated keratinocytes. Progerin-positive fibroblasts localize near the basement membrane and in the papillary dermis of young adult skin; however, their numbers increase and their distribution reaches the deep reticular dermis in elderly skin. Our findings demonstrate that progerin expression is a biomarker of normal cellular aging and may potentially be linked to terminal differentiation and senescence in elderly individuals

    Progerin expression in human skin.

    No full text
    <p>A, RT-PCR analysis of HGPS cells and human skin biopsies of indicated age, primers amplifying wild-type and progerin transcripts. B, Direct sequencing of a short portion within exon 11 of wild type lamin A (LMNA), and progerin transcripts from HGPS and 93-year-old subjects. C, Western blot analysis of protein extracted from skin biopsies of indicated age with anti-progerin 972S9, anti-lamin A/C and anti-actin antibodies.</p

    Progerin detection in a subset of terminally differentiated keratinocytes.

    No full text
    <p>Left panels correspond to anti-progerin monoclonal antibody staining of skin sections derived from individuals of indicated age. Right panels correspond to the merged signal of dapi and progerin signals. Square indicates the zoomed in region of the epidermis. ep denotes epidermis, and de the dermis.</p

    Human skin biopsies

    No full text
    <p>Classification of the skin biopsies originating from different body sites of unaffected individuals and collected at the Dermatology Department in accordance with the Columbia University Board protocols on human subject protection.</p><p>Total# 150 Samples</p
    corecore