1,828 research outputs found
Recommended from our members
Development of a 3D coculture system to study adipocyte and lymph node cell interactions
We have developed a long term 3-dimensional coculture system with adipocytes and lymph node
cells for the purpose of investigating interactions between these cells in vitro. Present experimental work with the culture system is aimed at introducing lymph node cells, in proportions similar to those found in intact lymph nodes, among differentiated adipocytes and observing interactions and the establishment of a spatial relationship between them. Co-cultures will be used to investigate the lymph node adipocyte interactions following immune stimulation (lipopolysaccharide treatment) measuring production of inflammatory mediators (cytokines) and lipolytic activity
Hyperthyroidism causing atrial fibrillation in a young man
Click on the link to view
Estradiol Treatment Prevents Injury Induced Enhancement in Spinal Cord Dynorphin Expression
Administration of the ovarian steroid estradiol in male and female animals has been shown to have neuromodulatory and neuroprotective effects in a variety of experimental models. In the present study, spinal tissues from dermatomes just above (T5–T7, at level) a severe chronic spinal cord injury (SCI) at T8 were analyzed for expression levels of prodynorphin (PRDN) and phospho-(serine 369) κ-opioid receptor (KOR-P) in 17 β estradiol (EB)- and placebo-treated adult male rats. Dynorphin was targeted since (1) it has previously been shown to be elevated post-SCI, (2) intrathecal injection of dynorphin produces several of the same adverse effects seen with a SCI, and (3) its increased expression is known to occur in a variety of different experimental models of central neuropathic pain. A significant elevation of extracellular levels of both PRDN and KOR-P in the placebo-treated SCI group relative to uninjured surgical sham controls was found in spinal tissues above the injury level, indicating increased dynorphin levels. Importantly, the EB-treated SCI group did not show elevations of PRDN levels at 6 weeks post-injury. Immunohistochemical analysis of at level tissues revealed that EB treatment significantly prevented a post-SCI increase in expression of PRDN puncta co-labeling synapsin I, a nerve terminal marker. The dynorphin-containing terminals co-labeled vesicular glutamate receptor-2 (a marker of glutamatergic terminals), a finding consistent with a non-opioid basis for the adverse effects of dynorphin. These results support a beneficial role for EB treatment post-SCI through a reduction in excessive spinal cord levels of dynorphin. Studies manipulating the timing of the EB treatment post-injury along with specific functional assessments will address whether the beneficial effects are due to EB’s potential neuromodulatory or neuroprotective action
Streptococcal pharyngitis and systemic lupus erythematosus
Click on the link to view
Ellipsometric measurements of the refractive indices of linear alkylbenzene and EJ-301 scintillators from 210 to 1000 nm
We report on ellipsometric measurements of the refractive indices of LAB-PPO,
Nd-doped LAB-PPO and EJ-301 scintillators to the nearest +/-0.005, in the
wavelength range 210-1000 nm.Comment: 7 pages, 4 figure
Target Mass Monitoring and Instrumentation in the Daya Bay Antineutrino Detectors
The Daya Bay experiment measures sin^2 2{\theta}_13 using functionally
identical antineutrino detectors located at distances of 300 to 2000 meters
from the Daya Bay nuclear power complex. Each detector consists of three nested
fluid volumes surrounded by photomultiplier tubes. These volumes are coupled to
overflow tanks on top of the detector to allow for thermal expansion of the
liquid. Antineutrinos are detected through the inverse beta decay reaction on
the proton-rich scintillator target. A precise and continuous measurement of
the detector's central target mass is achieved by monitoring the the fluid
level in the overflow tanks with cameras and ultrasonic and capacitive sensors.
In addition, the monitoring system records detector temperature and levelness
at multiple positions. This monitoring information allows the precise
determination of the detectors' effective number of target protons during data
taking. We present the design, calibration, installation and in-situ tests of
the Daya Bay real-time antineutrino detector monitoring sensors and readout
electronics.Comment: 22 pages, 20 figures; accepted by JINST. Changes in v2: minor
revisions to incorporate editorial feedback from JINS
Localized states in sheared electroconvection
Electroconvection in a thin, sheared fluid film displays a rich sequence of
bifurcations between different flow states as the driving voltage is increased.
We present a numerical study of an annular film in which a radial potential
difference acts on induced surface charges to drive convection. The film is
also sheared by independently rotating the inner edge of the annulus. This
simulation models laboratory experiments on electroconvection in sheared
smectic liquid crystal films. The applied shear competes with the electrical
forces, resulting in oscillatory and strongly subcritical bifurcations between
localized vortex states close to onset. At higher forcing, the flow becomes
chaotic via a Ruelle-Takens-Newhouse scenario. The simulation allows flow
visualization not available in the physical experiments, and sheds light on
previously observed transitions in the current-voltage characteristics of
electroconvecting smectic films.Comment: To be published in EuroPhysics Letters, 6 pages, 6 figures: final
versio
Weakly Nonlinear Analysis of Electroconvection in a Suspended Fluid Film
It has been experimentally observed that weakly conducting suspended films of
smectic liquid crystals undergo electroconvection when subjected to a large
enough potential difference. The resulting counter-rotating vortices form a
very simple convection pattern and exhibit a variety of interesting nonlinear
effects. The linear stability problem for this system has recently been solved.
The convection mechanism, which involves charge separation at the free surfaces
of the film, is applicable to any sufficiently two-dimensional fluid. In this
paper, we derive an amplitude equation which describes the weakly nonlinear
regime, by starting from the basic electrohydrodynamic equations. This regime
has been the subject of several recent experimental studies. The lowest order
amplitude equation we derive is of the Ginzburg-Landau form, and describes a
forward bifurcation as is observed experimentally. The coefficients of the
amplitude equation are calculated and compared with the values independently
deduced from the linear stability calculation.Comment: 26 pages, 2 included eps figures, submitted to Phys Rev E. For more
information, see http://mobydick.physics.utoronto.c
Bifurcations in annular electroconvection with an imposed shear
We report an experimental study of the primary bifurcation in
electrically-driven convection in a freely suspended film. A weakly conducting,
submicron thick smectic liquid crystal film was supported by concentric
circular electrodes. It electroconvected when a sufficiently large voltage
was applied between its inner and outer edges. The film could sustain rapid
flows and yet remain strictly two-dimensional. By rotation of the inner
electrode, a circular Couette shear could be independently imposed. The control
parameters were a dimensionless number , analogous to the Rayleigh
number, which is and the Reynolds number of the
azimuthal shear flow. The geometrical and material properties of the film were
characterized by the radius ratio , and a Prandtl-like number . Using measurements of current-voltage characteristics of a large number of
films, we examined the onset of electroconvection over a broad range of
, and . We compared this data quantitatively to
the results of linear stability theory. This could be done with essentially no
adjustable parameters. The current-voltage data above onset were then used to
infer the amplitude of electroconvection in the weakly nonlinear regime by
fitting them to a steady-state amplitude equation of the Landau form. We show
how the primary bifurcation can be tuned between supercritical and subcritical
by changing and .Comment: 17 pages, 12 figures. Submitted to Phys. Rev. E. Minor changes after
refereeing. See also http://mobydick.physics.utoronto.c
Annular electroconvection with shear
We report experiments on convection driven by a radial electrical force in
suspended annular smectic A liquid crystal films. In the absence of an
externally imposed azimuthal shear, a stationary one-dimensional (1D) pattern
consisting of symmetric vortex pairs is formed via a supercritical transition
at the onset of convection. Shearing reduces the symmetries of the base state
and produces a traveling 1D pattern whose basic periodic unit is a pair of
asymmetric vortices. For a sufficiently large shear, the primary bifurcation
changes from supercritical to subcritical. We describe measurements of the
resulting hysteresis as a function of the shear at radius ratio . This simple pattern forming system has an unusual combination of
symmetries and control parameters and should be amenable to quantitative
theoretical analysis.Comment: 12 preprint pages, 3 figures in 2 parts each. For more info, see
http://mobydick.physics.utoronto.c
- …