19,238 research outputs found

    Proof-of-Concept Testing of a Sustained Vortex-Flow Configuration for Hybrid Rocket Motors

    Get PDF
    One of the drawbacks of hybrid rocket motors is the limited regression rate of the fuel grain, which impacts on the scalablility of the type. A number of methods of increasing this have been proposed and successfully tested, in particular the use of swirling oxidiser flow to create turbulence and increase the local oxidiser mass flux. However, many of these have limitations in practical motors for many applications, and a common problem is that of the swirl decaying within the motor. The proposed method described here is to use a tapering fuel-grain port to sustain the swirl. A short series of firings indicates that such a method may be effective, although the evidence is limited thus far. The majority of previous research has used gaseous oxygen, and it has been found during this test programme that using liquid nitrous oxide poses particular problems. However, solutions have been found, and are described in this paper

    Is simultaneous yy and ξ\xi--scaling in the quasi-elastic region accidental?

    Full text link
    We study the yy and ξ\xi--scaling of the nuclear response at large momentum transfer in order to understand how scaling based on very different descriptions of the elementary interaction can occur simultaneously. We find that the approximate validity of ξ\xi-scaling at low energy loss arises from the coincidental behavior of the quasielastic and deep inelastic cross sections.Comment: 4 pages, 3 Postscript figure

    Initial experience using a femtosecond laser cataract surgery system at a UK National Health Service cataract surgery day care centre

    Get PDF
    © 2019 The Author(s). This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/OBJECTIVES: To describe the initial outcomes following installation of a cataract surgery laser system.SETTING: National Health Service cataract surgery day care unit in North London, UK.PARTICIPANTS: 158 eyes of 150 patients undergoing laser-assisted cataract surgery.INTERVENTIONS: Laser cataract surgery using the AMO Catalys femtosecond laser platform.PRIMARY AND SECONDARY OUTCOME MEASURES: PRIMARY OUTCOME MEASURE: intraoperative complications including anterior and posterior capsule tears.SECONDARY OUTCOME MEASURES: docking to the laser platform, successful treatment delivery, postoperative visual acuities.RESULTS: Mean case age was 67.7±10.8 years (range 29-88 years). Docking was successful in 94% (148/158 cases), and in 4% (6/148 cases) of these, the laser delivery was aborted part way during delivery due to patient movement. A total of 32 surgeons, of grades from junior trainee to consultant, performed the surgeries. Median case number per surgeon was 3 (range from 1-20). The anterior capsulotomy was complete in 99.3% of cases, there were no anterior capsule tears (0%). There were 3 cases with posterior capsule rupture requiring anterior vitrectomy, and 1 with zonular dialysis requiring anterior vitrectomy (4/148 eyes, 2.7%). These 4 cases were performed by trainee surgeons, and were either their first laser cataract surgery (2 surgeons) or their first and second laser cataract surgeries (1 surgeon).CONCLUSIONS: Despite the learning curve, docking and laser delivery were successfully performed in almost all cases, and surgical complication rates and visual outcomes were similar to those expected based on national data. Complications were predominately confined to trainee surgeons, and with the exception of intraoperative pupil constriction appeared unrelated to the laser-performed steps.Peer reviewe

    ALTERNATIVE METHODS FOR DISTRIBUTING STATE AID TO LOCAL GOVERNMENTS IN NEW YORK

    Get PDF
    This paper simulates alternative distributions of general purpose state aid to local governments under different combinations of criteria: tax capacity, effort, and revenue needs. Revenue needs are based on Tobit estimates of the costs of providing average levels of 16 categories of services. Segmenting the sample into high and low population jurisdictions provided a more realistic set of cost estimates. Available revenues or capacity are determined by multiplying each jurisdiction's tax bases by standard tax rates. A Need-Capacity gap, the difference between needed revenues and available revenues, is used as a needs-based distribution strategy for general purpose aid. Finally an effort gap, based on above average tax efforts was added to the Need-Capacity gap to define a Need-Capacity-Effort strategy.Public Economics,

    Measurement of the SOC State Specific Heat in ^4He

    Get PDF
    When a heat flux Q is applied downward through a sample of liquid 4He near the lambda transition, the helium self organizes such that the gradient in temperature matches the gravity induced gradient in Tlambda. All the helium in the sample is then at the same reduced temperature tSOC = ((T[sub SOC] - T[sub lambda])/T[sub lambda]) and the helium is said to be in the Self-Organized Critical (SOC) state. We have made preliminary measurements of the 4He SOC state specific heat, C[del]T(T(Q)). Despite having a cell height of 2.54 cm, our results show no difference between C[del]T and the zero-gravity 4He specific heat results of the Lambda Point Experiment (LPE) [J.A. Lipa et al., Phys. Rev. B, 68, 174518 (2003)] over the range 250 to 450 nK below the transition. There is no gravity rounding because the entire sample is at the same reduced temperature tSOC(Q). Closer to Tlambda the SOC specific heat falls slightly below LPE, reaching a maximum at approximately 50 nK below Tlambda, in agreement with theoretical predictions [R. Haussmann, Phys. Rev. B, 60, 12349 (1999)]

    Randomized Revenue Monotone Mechanisms for Online Advertising

    Full text link
    Online advertising is the main source of revenue for many Internet firms. A central component of online advertising is the underlying mechanism that selects and prices the winning ads for a given ad slot. In this paper we study designing a mechanism for the Combinatorial Auction with Identical Items (CAII) in which we are interested in selling kk identical items to a group of bidders each demanding a certain number of items between 11 and kk. CAII generalizes important online advertising scenarios such as image-text and video-pod auctions [GK14]. In image-text auction we want to fill an advertising slot on a publisher's web page with either kk text-ads or a single image-ad and in video-pod auction we want to fill an advertising break of kk seconds with video-ads of possibly different durations. Our goal is to design truthful mechanisms that satisfy Revenue Monotonicity (RM). RM is a natural constraint which states that the revenue of a mechanism should not decrease if the number of participants increases or if a participant increases her bid. [GK14] showed that no deterministic RM mechanism can attain PoRM of less than ln(k)\ln(k) for CAII, i.e., no deterministic mechanism can attain more than 1ln(k)\frac{1}{\ln(k)} fraction of the maximum social welfare. [GK14] also design a mechanism with PoRM of O(ln2(k))O(\ln^2(k)) for CAII. In this paper, we seek to overcome the impossibility result of [GK14] for deterministic mechanisms by using the power of randomization. We show that by using randomization, one can attain a constant PoRM. In particular, we design a randomized RM mechanism with PoRM of 33 for CAII

    Position and energy-resolved particle detection using phonon-mediated microwave kinetic inductance detectors

    Get PDF
    We demonstrate position and energy-resolved phonon-mediated detection of particle interactions in a silicon substrate instrumented with an array of microwave kinetic inductance detectors (MKIDs). The relative magnitude and delay of the signal received in each sensor allow the location of the interaction to be determined with ≲ 1mm resolution at 30 keV. Using this position information, variations in the detector response with position can be removed, and an energy resolution of σ_E = 0.55 keV at 30 keV was measured. Since MKIDs can be fabricated from a single deposited film and are naturally multiplexed in the frequency domain, this technology can be extended to provide highly pixelized athermal phonon sensors for ∼1 kg scale detector elements. Such high-resolution, massive particle detectors would be applicable to rare-event searches such as the direct detection of dark matter, neutrinoless double-beta decay, or coherent neutrino-nucleus scattering

    Superconducting On-chip Fourier Transform Spectrometer

    Get PDF
    The kinetic inductance effect is strongly nonlinear with applied current in NbTiN, TiN and NbN thin films. This can be utilized to realize novel devices. We present results from transmission lines made with these materials, where DC (current) control is used to modulate the phase velocity thereby enabling on-chip spectrometers. Utility of such compact spectrometers is discussed, along with their natural connection with parametric amplifiers

    CURING OF POLYMERIC COMPOSITES USING MICROWAVE RESIN TRANSFER MOULDING (RTM)

    Get PDF
    The main objective of this work is to compare the difference between microwave heating and conventional thermal heating in fabricating carbon/epoxy composites. Two types of epoxy resin systems were used as matrices, LY5052-HY5052 and DGEBA-HY917-DY073. All composite samples were fabricated using resin transfer moulding (RTM) technique. The curing of the LY5052-HY5052-carbon and the DGEBA-HY917-DY073-carbon composite systems, were carried out at 100 °C and 120 °C, respectively. Microwave heating showed better temperature control than conventional heating, however, the heating rate of the microwave cured samples were slower than the conventionally cured samples. This was attributed to the lower power (250 W) used when heating with microwaves compared to 2000 W used in conventional heating. Study of thermal characteristics as curing progressed showed that the polymerisation reaction occurred at a faster rate during microwave curing than in conventional curing for both the DGEBA and the LY/HY5052 carbon composite systems. The actual cure cycle was reduced from 60 minutes to 40 minutes when using microwaves for curing DGEBA-carbon composites. As for LY/HY5052-carbon composites, the actual cure cycle was reduced from 3 hours to 40 minutes. Both conventional and microwave heating yielded similar glass transition temperatures (120 °C for DGEBA systems and 130 °C for LY/HY5052 systems). Microwave cured composites had higher void contents than conventionally cured composites (2.2-2.8% and 1.8-2.4% for DGEBA and LY/HY5052 microwave cured composites, respectively, compared to 0.2-0.4% for both DGEBA and LY/HY5052 thermally cured composites). C-scan traces showed that all composites, regardless of methods of curing, had minimal defects

    Thermal performance of a mine refuge chamber with human body heat sources under ventilation

    Get PDF
    This paper investigated the dynamic coupling heat transfer characteristics of rock and air in a Mine Refuge Chamber (MRC) under ventilation. In the current work, a comprehensive fifty-person MRC model combining human-body heat sources and ventilation is established, the proposed model is validated against available experimental data with deviation less than 4%. Furthermore, sensitivity analysis is performed to investigate the influence of several control parameters such as heating rate, ventilation and wall area in a MRC through using numerical simulation. Results indicated that: (i) the heat transfer process in a MRC will reach a stage of air temperature slow increase (ATSI) in less than 0.5 h. The air temperature rises linearly with the square root of time during the ATSI stage; (ii) for a MRC built in a sandstone seam with an initial rock temperature of less than 27 °C, the average air temperature will not exceed 35 °C in 96 h when the ventilation volume rate is 0.3 m 3/min per person; (iii) the rate of temperature rise in MRC is proportional to the rate of heat generation, but it is inversely proportional to the thermal conductivity, density and thermal capacity of the rock, as well as the ventilation volume rate and the wall area; (iv) an empirical correlation for the MRC average air temperature is developed while the supply air temperature equals to the initial rock temperature
    corecore