793 research outputs found

    What should the detection rates of cancers be in breast screening programmes?

    Get PDF
    Minimum detection rates at screening are sometimes laid down as standards for breast cancer screening programmes, based on underlying incidence of the disease in the age group screened. Detection rates should also depend on desired sensitivity, mean sojourn time, interscreening interval and the screening round – that is, prevalent (first) or incident (second or subsequent). In this paper, we use these quantities to derive expected, minimum and maximum detection rates proportional to the underlying incidence as well as estimated underlying incidence rates from extrapolation of prescreening trends in England and Wales to derive alternative standard minimum, expected and maximum detection rates per 1000 women screened for the UK Breast Screening Programme, as follows: minimum detection rates should be 4.1 and 4.3 at prevalence screen and incidence screens, respectively; expected rates should be 6.9 and 4.8 and maximum rates of 9.6 and 5.5. These are consistent with observed detection rates in the UK programme

    Trends in the lifetime risk of developing cancer in Great Britain: comparison of risk for those born from 1930 to 1960

    Get PDF
    BACKGROUND: Typically, lifetime risk is calculated by the period method using current risks at different ages. Here, we estimate the probability of being diagnosed with cancer for individuals born in a given year, by estimating future risks as the cohort ages. METHODS: We estimated the lifetime risk of cancer in Britain separately for men and women born in each year from 1930 to 1960. We projected rates of all cancers (excluding non-melanoma skin cancer) and of all cancer deaths forwards using a flexible age-period-cohort model and backwards using age-specific extrapolation. The sensitivity of the estimated lifetime risk to the method of projection was explored. RESULTS: The lifetime risk of cancer increased from 38.5% for men born in 1930 to 53.5% for men born in 1960. For women it increased from 36.7 to 47.5%. Results are robust to different models for projections of cancer rates. CONCLUSIONS: The lifetime risk of cancer for people born since 1960 is >50%. Over half of people who are currently adults under the age of 65 years will be diagnosed with cancer at some point in their lifetime

    Age-Related Differences in Susceptibility to Carcinogenesis. II. Approaches for Application and Uncertainty Analyses for Individual Genetically Acting Carcinogens

    Get PDF
    In an earlier report we developed a quantitative likelihood-based analysis of the differences in sensitivity of rodents to mutagenic carcinogens across three life stages (fetal, birth to weaning, and weaning to 60 days) relative to exposures in adult life. Here we draw implications for assessing human risks for full lifetime exposures, taking into account three types of uncertainties in making projections from the rodent data: uncertainty in the central estimates of the life-stage–specific sensitivity factors estimated earlier, uncertainty from chemical-to-chemical differences in life-stage–specific sensitivities for carcinogenesis, and uncertainty in the mapping of rodent life stages to human ages/exposure periods. Among the uncertainties analyzed, the mapping of rodent life stages to human ages/exposure periods is most important quantitatively (a range of several-fold in estimates of the duration of the human equivalent of the highest sensitivity “birth to weaning” period in rodents). The combined effects of these uncertainties are estimated with Monte Carlo analyses. Overall, the estimated population arithmetic mean risk from lifetime exposures at a constant milligrams per kilogram body weight level to a generic mutagenic carcinogen is about 2.8-fold larger than expected from adult-only exposure with 5–95% confidence limits of 1.5-to 6-fold. The mean estimates for the 0- to 2-year and 2- to 15-year periods are about 35–55% larger than the 10- and 3-fold sensitivity factor adjustments recently proposed by the U.S. Environmental Protection Agency. The present results are based on data for only nine chemicals, including five mutagens. Risk inferences will be altered as data become available for other chemicals

    Overdiagnosis and overtreatment of breast cancer: Microsimulation modelling estimates based on observed screen and clinical data

    Get PDF
    There is a delicate balance between the favourable and unfavourable side-effects of screening in general. Overdiagnosis, the detection of breast cancers by screening that would otherwise never have been clinically diagnosed but are now consequently treated, is such an unfavourable side effect. To correctly model the natural history of breast cancer, one has to estimate mean durations of the different pre-clinical phases, transition probabilities to clinical cancer stages, and sensitivity of the applied test based on observed screen and clinical data. The Dutch data clearly show an increase in screen-detected cases in the 50 to 74 year old age group since the introduction of screening, and a decline in incidence around age 80 years. We had estimated that 3% of total incidence would otherwise not have been diagnosed clinically. This magnitude is no reason not to offer screening for women aged 50 to 74 years. The increases in ductal carcinoma in situ (DCIS) are primarily due to mammography screening, but DCIS still remains a relatively small proportion of the total breast cancer problem

    Randomised controlled trial of mammographic screening in women from age 40: results of screening in the first 10 years

    Get PDF
    Debate continues over the effectiveness of screening by mammography in women below age 50. We report here on results of screening in the first 10 years of a randomised trial to study the effect on breast cancer mortality of invitation to annual mammography from age 40 to 41 compared to first invitation to the 3-yearly UK national programme at age 50–52. The trial is taking place in 23 NHS breast screening centres. Between 1991 and 1997, 160 921 women were randomised in the ratio 1 : 2 to intervention and control arms. Screening is by two views at first screen and single view subsequently; data on screening up to and including round five are now complete. Uptake of invitation to screening is between 68 and 70% at all but the latest screening rounds. Rates of referral for assessment are 4.6% at first screen and 3.4% at subsequent screens. Invasive cancer detection rates are 0.09% at first screen, and similar at rescreens until the sixth and later screens. There is little evidence of regular mammography in the trial control arm. The setting of this trial within the NHS breast screening programme should ensure applicability of results to a national programme

    A case–control study of the impact of the East Anglian breast screening programme on breast cancer mortality

    Get PDF
    Although breast cancer screening has been shown to work in randomised trials, there is a need to evaluate service screening programmes to ensure that they are delivering the benefit indicated by the trials. We carried out a case–control study to investigate the effect of mammography service screening, in the NHS breast screening programme, on breast cancer mortality in the East Anglian region of the UK. Cases were deaths from breast cancer in women diagnosed between the ages of 50 and 70 years, following the instigation of the East Anglia Breast Screening Programme in 1989. The controls were women (two per case) who had not died of breast cancer, from the same area, matched by date of birth to the cases. Each control was known to be alive at the time of death of her matched case. All women were known to the breast screening programme and were invited, at least once, to be screened. There were 284 cases and 568 controls. The odds ratio (OR) for risk of death from breast cancer in women who attended at least one routine screen compared to those who did not attend was 0.35 (CI: 0.24, 0.50). Adjusting for self-selection bias gave an estimate of the breast cancer mortality reduction associated with invitation to screening of 35% (OR=0.65, 95% CI: 0.48, 0.88). The effect of actually being screened was a 48% breast cancer mortality reduction (OR=0.52, 95% CI: 0.32, 0.84). The results suggest that the National Breast Screening Programme in East Anglia is achieving a reduction in breast cancer deaths, which is at least consistent with the results from the randomised controlled trials of mammographic screening
    corecore