7 research outputs found

    Ethnobotanical survey of medicinal plants used in the treatment of animal diarrhoea in Plateau State, Nigeria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of medicinal plants in the treatment of diseases has generated renewed interest in recent times, as herbal preparations are increasingly being used in both human and animal healthcare systems. Diarrhoea is one of the common clinical signs of gastrointestinal disorders caused by both infectious and non-infectious agents and an important livestock debilitating condition. Plateau State is rich in savannah and forest vegetations and home to a vast collection of plants upheld in folklore as having useful medicinal applications. There is however scarcity of documented information on the medicinal plants used in the treatment of animal diarrhoea in the state, thus the need for this survey. Ten (10) out of 17 Local Government Areas (LGAs), spread across the three senatorial zones were selected. Farmers were interviewed using well structured, open-ended questionnaire and guided dialogue techniques between October and December 2010. Medicinal plants reported to be effective in diarrhoea management were collected using the guided field-walk method for identification and authentication.</p> <p>Results</p> <p>A total of 248 questionnaires were completed, out of which 207 respondents (83.47%) acknowledged the use of herbs in diarrhoea management, while 41 (16.53%) do not use herbs or apply other traditional methods in the treatment of diarrhoea in their animals. Medicinal plants cited as beneficial in the treatment of animal diarrhoea numbered 132, from which 57(43.18%) were scientifically identified and classified into 25 plant families with the families Fabaceae (21%) and Combretaceae (14.04%) having the highest occurrence. The plant parts mostly used in antidiarrhoeal herbal preparations are the leaves (43.86%) followed by the stem bark (29.82%). The herbal preparations are usually administered orally.</p> <p>Conclusion</p> <p>Rural communities in Plateau State are a rich source of information on medicinal plants as revealed in this survey. There is need to scientifically ascertain the authenticity of the claimed antidiarrhoeal properties of these plants and perhaps develop more readily available alternatives in the treatment of diarrhoea.</p

    The Roots of Neorautanenia mitis (A. Rich) Verdcourt: Further Evidence of Its Antidiarrhoeal Activity

    No full text
    Despite the current management options and therapeutics used in the treatment of diarrhoea, in Africa and Asia, diarrhoea remains a major concern, especially in children under the age of 5 years. Traditional knowledge of medicinal plants used in the management of diarrhoea symptoms can be explored for their efficacy. In Nigeria, the TMPs (Traditional Medicine Practitioners) have, over the years, employed medicinal plants in the management of diarrhoea symptoms. In our current and previous studies, we aimed at validating the effectiveness of Neorautanenia mitis in the management of diarrhoea as claimed by the TMPs. Out of the 20 compounds isolated from N. mitis, the compounds neodulin, pachyrrhizine, neotenone and dolineone were the most abundant, and in this study, neodulin showed a pronounced relaxation of the rhythmic contraction of the isolated rabbit jejunum in an organ bath in a concentration-dependent manner, with a complete relaxation at 60 µg/mL. Neotenone and dolineone showed a dose-dependent inhibition of defecation of 65.07%, and 50.01%, respectively, at 20 mg/kg in a castor-oil-induced diarrhoea model. This is a strong indication that compounds from N. mitis possess antidiarrhoeal properties, thereby giving credence to its traditional usage in diarrhoea therapy, and therefore validating its antidiarrhoeal activity and its being worthy of further investigation

    The Roots of <i>Neorautanenia mitis</i> (A. Rich) Verdcourt: Further Evidence of Its Antidiarrhoeal Activity

    No full text
    Despite the current management options and therapeutics used in the treatment of diarrhoea, in Africa and Asia, diarrhoea remains a major concern, especially in children under the age of 5 years. Traditional knowledge of medicinal plants used in the management of diarrhoea symptoms can be explored for their efficacy. In Nigeria, the TMPs (Traditional Medicine Practitioners) have, over the years, employed medicinal plants in the management of diarrhoea symptoms. In our current and previous studies, we aimed at validating the effectiveness of Neorautanenia mitis in the management of diarrhoea as claimed by the TMPs. Out of the 20 compounds isolated from N. mitis, the compounds neodulin, pachyrrhizine, neotenone and dolineone were the most abundant, and in this study, neodulin showed a pronounced relaxation of the rhythmic contraction of the isolated rabbit jejunum in an organ bath in a concentration-dependent manner, with a complete relaxation at 60 µg/mL. Neotenone and dolineone showed a dose-dependent inhibition of defecation of 65.07%, and 50.01%, respectively, at 20 mg/kg in a castor-oil-induced diarrhoea model. This is a strong indication that compounds from N. mitis possess antidiarrhoeal properties, thereby giving credence to its traditional usage in diarrhoea therapy, and therefore validating its antidiarrhoeal activity and its being worthy of further investigation

    Isolation of CFTR and TMEM16A inhibitors from Neorautanenia mitis (A. Rich) Verdcourt: Potential lead compounds for treatment of secretory diarrhea

    No full text
    A phytochemical study on the root extracts of Neorautanenia mitis, a Nigerian medicinal plant used in the management of diarrhea, led to the isolation of one new and 19 known natural products. These compounds and crude extracts were evaluated for Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Cl− channel and calcium-activated Cl− channel (TMEM16A) inhibitory activities in T84 and Calu-3 cells, respectively. Four compounds namely dolineon, neodulin, pachyrrhizine, and neotenone inhibited cAMP-induced Cl− secretion across T84 cell monolayers with IC50 values of ~0.81 μM, ~2.42 μM, ~2.87 μM, and ~4.66 μM, respectively. Dolineon having the highest inhibitory activity also inhibited a Ca + activated Cl− channel (TMEM16A) with an IC50 value of ~4.38 μM. The in vitro antidiarrheal activity of dolineon was evaluated on cholera toxin (CT) induced chloride secretion in T84 cells, where it inhibited CT-induced chloride secretion by >70% at 100 μM. Dolineon also inhibited CT-induced fluid secretion by ~70% in an in vivo mouse closed loop model at a dose of 16.9 μg/loop. The cytotoxicity of the extracts and compounds was evaluated on KB, Vero and BHK21 cells, dolineon showed low cytotoxicity of >29.6 μM and 57.30 + 6.77 μM against Vero and BHK21 cells, respectively. Our study revealed that several compounds isolated from N. mitis showed antidiarrheal activity. The most active compound dolineon can potentially serve as a lead compound towards the development of CFTR and TMEM16A inhibitors as future therapeutics for secretory diarrhea.SK was supported by a Research Chair Grant (project no. P-18- 50116) from the National Science and Technology Development Agency (NSTDA), Thailand

    Isolation of bioactive compounds from medicinal plants used in traditional medicine: Rautandiol B, a potential lead compound against Plasmodium falciparum

    No full text
    Background: Neorautanenia mitis, Hydnora abyssinica, and Senna surattensis are medicinal plants with a variety of traditional uses. In this study, we sought to isolate the bioactive compounds responsible for some of these activities, and to uncover their other potential medicinal properties. Methods: The DCM and ethanol extracts of the roots of N. mitis and H. abyssinica, and the leaves of S. surattensis were prepared and their phytochemical components were isolated and purified using chromatographic methods. These extracts and their pure phytochemical components were evaluated in in-vitro models for their inhibitory activities against Plasmodium falciparum, Trypanosoma brucei rhodesiense, Mycobacterium tuberculosis, α-amylase (AA), and α-glucosidase (AG). Results: Rautandiol B had significant inhibitory activities against two strains of Plasmodium falciparum showing a high safety ratio (SR) and IC50 values of 0.40 ± 0.07 μM (SR - 108) and 0.74 ± 0.29 μM (SR - 133) against TM4/8.2 and K1CB1, respectively. While (−)-2-isopentenyl-3-hydroxy-8-9-methylenedioxypterocarpan showed the highest inhibitory activity against T. brucei rhodesiense with an IC50 value of 4.87 ± 0.49 μM (SR \u3e 5.83). All crude extracts showed inhibitory activities against AA and AG, with three of the most active phytochemical components; rautandiol A, catechin, and dolineon, having only modest activities against AG with IC50 values of 0.28 mM, 0.36 mM and 0.66 mM, respectively. Conclusion: These studies have led to the identification of lead compounds with potential for future drug development, including Rautandiol B, as a potential lead compound against Plasmodium falciparum. The relatively higher inhibitory activities of the crude extracts against AG and AA over their isolated components could be due to the synergistic effects between their phytochemical components. These crude extracts could potentially serve as alternative inhibitors of AG and AA and as therapeutics for diabetes
    corecore