1,090 research outputs found

    Mutations and altered expression of SERPINF1 in patients with familial otosclerosis

    Get PDF
    Otosclerosis is a relatively common heterogenous condition, characterized by abnormal bone remodelling in the otic capsule leading to fixation of the stapedial footplate and an associated conductive hearing loss. Although familial linkage and candidate gene association studies have been performed in recent years, little progress has been made in identifying disease-causing genes. Here, we used whole-exome sequencing in four families exhibiting dominantly inherited otosclerosis to identify 23 candidate variants (reduced to 9 after segregation analysis) for further investigation in a secondary cohort of 84 familial cases. Multiple mutations were found in the SERPINF1 (Serpin Peptidase Inhibitor, Clade F) gene which encodes PEDF (pigment epithelium-derived factor), a potent inhibitor of angiogenesis and known regulator of bone density. Six rare heterozygous SERPINF1 variants were found in seven patients in our familial otosclerosis cohort; three are missense mutations predicted to be deleterious to protein function. The other three variants are all located in the 5'-untranslated region (UTR) of an alternative spliced transcript SERPINF1-012 RNA-seq analysis demonstrated that this is the major SERPINF1 transcript in human stapes bone. Analysis of stapes from two patients with the 5'-UTR mutations showed that they had reduced expression of SERPINF1-012 All three 5'-UTR mutations are predicted to occur within transcription factor binding sites and reporter gene assays confirmed that they affect gene expression levels. Furthermore, RT-qPCR analysis of stapes bone cDNA showed that SERPINF1-012 expression is reduced in otosclerosis patients with and without SERPINF1 mutations, suggesting that it may be a common pathogenic pathway in the disease

    The association between dog ownership or dog walking and fitness or weight status in childhood

    Get PDF
    Health benefits of dog walking are established in adults: dog owners are on average more physically active and those walking their dogs regularly have lower weight status than those who do not. However, there has been little research on children. A survey of pet ownership and involvement in dog walking was combined with fitness and weight status measurements of 1021 9-10 yrs old children, in the Liverpool SportsLinx study. We found little evidence to support that children who live with, or walk with, dogs, are any fitter or less likely to be obese than those who do not. This is an important finding as it suggests that the activity that children currently do with dogs is not sufficient enough to impact weight status or fitness

    S1PR2 variants associated with auditory function in humans and endocochlear potential decline in mouse

    Get PDF
    Progressive hearing loss is very common in the population but we still know little about the underlying pathology. A new spontaneous mouse mutation (stonedeaf, stdf ) leading to recessive, early-onset progressive hearing loss was detected and exome sequencing revealed a Thr289Arg substitution in Sphingosine-1-Phosphate Receptor-2 (S1pr2). Mutants aged 2 weeks had normal hearing sensitivity, but at 4 weeks most showed variable degrees of hearing impairment, which became severe or profound in all mutants by 14 weeks. Endocochlear potential (EP) was normal at 2 weeks old but was reduced by 4 and 8 weeks old in mutants, and the stria vascularis, which generates the EP, showed degenerative changes. Three independent mouse knockout alleles of S1pr2 have been described previously, but this is the first time that a reduced EP has been reported. Genomic markers close to the human S1PR2 gene were significantly associated with auditory thresholds in the 1958 British Birth Cohort (n = 6099), suggesting involvement of S1P signalling in human hearing loss. The finding of early onset loss of EP gives new mechanistic insight into the disease process and suggests that therapies for humans with hearing loss due to S1P signalling defects need to target strial function

    Distinctive aspects of consent in pilot and feasibility studies

    Get PDF
    Prior to a main randomized clinical trial, investigators often carry out a pilot or feasibility study in order to test certain trial processes or estimate key statistical parameters, so as to optimize the design of the main trial and/or determine whether it can feasibly be run. Pilot studies reflect the design of the intended main trial, whereas feasibility studies may not do so, and may not involve allocation to different treatments. Testing relative clinical effectiveness is not considered an appropriate aim of pilot or feasibility studies. However, consent is no less important than in a main trial as a means of morally legitimizing the investigator's actions. Two misperceptions are central to consent in clinical studies-therapeutic misconception (a tendency to conflate research and therapy) and therapeutic misestimation (a tendency to overestimate possible benefits and/or underestimate possible harms associated with participation). These phenomena may take a distinctive form in pilot and feasibility studies, owing to potential participants' likely prior unfamiliarity with the nature and purposes of such studies. Thus, participants may confuse the aims of a pilot or feasibility study (developing or optimizing trial design and processes) with those of a main trial (testing treatment effectiveness) and base consent on this misconstrual. Similarly, a misunderstanding of the ability of pilot and feasibility studies to provide information that will inform clinical care, or the underdeveloped nature of interventions included in such studies, may lead to inaccurate assessments of the objective possibility of benefit, and weaken the epistemic basis of consent accordingly. Equipoise may also be particularly challenging to grasp in the context of a pilot study. The consent process in pilot and feasibility studies requires a particular focus, and careful communication, if it is to carry the appropriate moral weight. There are corresponding implications for the process of ethical approval

    Evidence for a Mass Dependent Step-Change in the Scaling of Efficiency in Terrestrial Locomotion

    Get PDF
    A reanalysis of existing data suggests that the established tenet of increasing efficiency of transport with body size in terrestrial locomotion requires re-evaluation. Here, the statistical model that described the data best indicated a dichotomy between the data for small (<1 kg) and large animals (>1 kg). Within and between these two size groups there was no detectable difference in the scaling exponents (slopes) relating metabolic (Emet) and mechanical costs (Emech, CM) of locomotion to body mass (Mb). Therefore, no scaling of efficiency (Emech, CM/Emet) with Mb was evident within each size group. Small animals, however, appeared to be generally less efficient than larger animals (7% and 26% respectively). Consequently, it is possible that the relationship between efficiency and Mb is not continuous, but, rather, involves a step-change. This step-change in the efficiency of locomotion mirrors previous findings suggesting a postural cause for an apparent size dichotomy in the relationship between Emet and Mb. Currently data for Emech, CM is lacking, but the relationship between efficiency in terrestrial locomotion and Mb is likely to be determined by posture and kinematics rather than body size alone. Hence, scaling of efficiency is likely to be more complex than a simple linear relationship across body sizes. A homogenous study of the mechanical cost of terrestrial locomotion across a broad range of species, body sizes, and importantly locomotor postures is a priority for future research

    A statistical framework for genetic association studies of power curves in bird flight

    Get PDF
    How the power required for bird flight varies as a function of forward speed can be used to predict the flight style and behavioral strategy of a bird for feeding and migration. A U-shaped curve was observed between the power and flight velocity in many birds, which is consistent to the theoretical prediction by aerodynamic models. In this article, we present a general genetic model for fine mapping of quantitative trait loci (QTL) responsible for power curves in a sample of birds drawn from a natural population. This model is developed within the maximum likelihood context, implemented with the EM algorithm for estimating the population genetic parameters of QTL and the simplex algorithm for estimating the QTL genotype-specific parameters of power curves. Using Monte Carlo simulation derived from empirical observations of power curves in the European starling (Sturnus vulgaris), we demonstrate how the underlying QTL for power curves can be detected from molecular markers and how the QTL detected affect the most appropriate flight speeds used to design an optimal migration strategy. The results from our model can be directly integrated into a conceptual framework for understanding flight origin and evolution

    Diminished Self-Chaperoning Activity of the ΔF508 Mutant of CFTR Results in Protein Misfolding

    Get PDF
    The absence of a functional ATP Binding Cassette (ABC) protein called the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) from apical membranes of epithelial cells is responsible for cystic fibrosis (CF). Over 90% of CF patients carry at least one mutant allele with deletion of phenylalanine at position 508 located in the N-terminal nucleotide binding domain (NBD1). Biochemical and cell biological studies show that the ΔF508 mutant exhibits inefficient biosynthetic maturation and susceptibility to degradation probably due to misfolding of NBD1 and the resultant misassembly of other domains. However, little is known about the direct effect of the Phe508 deletion on the NBD1 folding, which is essential for rational design strategies of cystic fibrosis treatment. Here we show that the deletion of Phe508 alters the folding dynamics and kinetics of NBD1, thus possibly affecting the assembly of the complete CFTR. Using molecular dynamics simulations, we find that meta-stable intermediate states appearing on wild type and mutant folding pathways are populated differently and that their kinetic accessibilities are distinct. The structural basis of the increased misfolding propensity of the ΔF508 NBD1 mutant is the perturbation of interactions in residue pairs Q493/P574 and F575/F578 found in loop S7-H6. As a proof-of-principle that the S7-H6 loop conformation can modulate the folding kinetics of NBD1, we virtually design rescue mutations in the identified critical interactions to force the S7-H6 loop into the wild type conformation. Two redesigned NBD1-ΔF508 variants exhibited significantly higher folding probabilities than the original NBD1-ΔF508, thereby partially rescuing folding ability of the NBD1-ΔF508 mutant. We propose that these observed defects in folding kinetics of mutant NBD1 may also be modulated by structures separate from the 508 site. The identified structural determinants of increased misfolding propensity of NBD1-ΔF508 are essential information in correcting this pathogenic mutant

    Genomic Runs of Homozygosity Record Population History and Consanguinity

    Get PDF
    The human genome is characterised by many runs of homozygous genotypes, where identical haplotypes were inherited from each parent. The length of each run is determined partly by the number of generations since the common ancestor: offspring of cousin marriages have long runs of homozygosity (ROH), while the numerous shorter tracts relate to shared ancestry tens and hundreds of generations ago. Human populations have experienced a wide range of demographic histories and hold diverse cultural attitudes to consanguinity. In a global population dataset, genome-wide analysis of long and shorter ROH allows categorisation of the mainly indigenous populations sampled here into four major groups in which the majority of the population are inferred to have: (a) recent parental relatedness (south and west Asians); (b) shared parental ancestry arising hundreds to thousands of years ago through long term isolation and restricted effective population size (N(e)), but little recent inbreeding (Oceanians); (c) both ancient and recent parental relatedness (Native Americans); and (d) only the background level of shared ancestry relating to continental N(e) (predominantly urban Europeans and East Asians; lowest of all in sub-Saharan African agriculturalists), and the occasional cryptically inbred individual. Moreover, individuals can be positioned along axes representing this demographic historic space. Long runs of homozygosity are therefore a globally widespread and under-appreciated characteristic of our genomes, which record past consanguinity and population isolation and provide a distinctive record of the demographic history of an individual's ancestors. Individual ROH measures will also allow quantification of the disease risk arising from polygenic recessive effects
    • …
    corecore