12,731 research outputs found
A simple encoding of a quantum circuit amplitude as a matrix permanent
A simple construction is presented which allows computing the transition
amplitude of a quantum circuit to be encoded as computing the permanent of a
matrix which is of size proportional to the number of quantum gates in the
circuit. This opens up some interesting classical monte-carlo algorithms for
approximating quantum circuits.Comment: 6 figure
The Kaon B-parameter from Quenched Domain-Wall QCD
We present numerical results for the kaon B-parameter, B_K, determined in the
quenched approximation of lattice QCD. Our simulations are performed using
domain-wall fermions and the renormalization group improved, DBW2 gauge action
which combine to give quarks with good chiral symmetry at finite lattice
spacing. Operators are renormalized non-perturbatively using the RI/MOM scheme.
We study scaling by performing the simulation on two different lattices with
a^{-1} = 1.982(30) and 2.914(54) GeV. We combine this quenched scaling study
with an earlier calculation of B_K using two flavors of dynamical, domain-wall
quarks at a single lattice spacing to obtain
B_K(MS,NDR,mu=2GeV)=0.563(21)(39)(30), were the first error is statistical, the
second systematic (without quenching errors) and the third estimates the error
due to quenching.Comment: 77 pages, 44 figures, to be published in Phys. Rev.
Fault-tolerant quantum computation with cluster states
The one-way quantum computing model introduced by Raussendorf and Briegel
[Phys. Rev. Lett. 86 (22), 5188-5191 (2001)] shows that it is possible to
quantum compute using only a fixed entangled resource known as a cluster state,
and adaptive single-qubit measurements. This model is the basis for several
practical proposals for quantum computation, including a promising proposal for
optical quantum computation based on cluster states [M. A. Nielsen,
arXiv:quant-ph/0402005, accepted to appear in Phys. Rev. Lett.]. A significant
open question is whether such proposals are scalable in the presence of
physically realistic noise. In this paper we prove two threshold theorems which
show that scalable fault-tolerant quantum computation may be achieved in
implementations based on cluster states, provided the noise in the
implementations is below some constant threshold value. Our first threshold
theorem applies to a class of implementations in which entangling gates are
applied deterministically, but with a small amount of noise. We expect this
threshold to be applicable in a wide variety of physical systems. Our second
threshold theorem is specifically adapted to proposals such as the optical
cluster-state proposal, in which non-deterministic entangling gates are used. A
critical technical component of our proofs is two powerful theorems which
relate the properties of noisy unitary operations restricted to act on a
subspace of state space to extensions of those operations acting on the entire
state space.Comment: 31 pages, 54 figure
Proton decay matrix elements with domain-wall fermions
Hadronic matrix elements of operators relevant to nucleon decay in grand
unified theories are calculated numerically using lattice QCD. In this context,
the domain-wall fermion formulation, combined with non-perturbative
renormalization, is used for the first time. These techniques bring reduction
of a large fraction of the systematic error from the finite lattice spacing.
Our main effort is devoted to a calculation performed in the quenched
approximation, where the direct calculation of the nucleon to pseudoscalar
matrix elements, as well as the indirect estimate of them from the nucleon to
vacuum matrix elements, are performed. First results, using two flavors of
dynamical domain-wall quarks for the nucleon to vacuum matrix elements are also
presented to address the systematic error of quenching, which appears to be
small compared to the other errors. Our results suggest that the representative
value for the low energy constants from the nucleon to vacuum matrix elements
are given as |alpha| simeq |beta| simeq 0.01 GeV^3. For a more reliable
estimate of the physical low energy matrix elements, it is better to use the
relevant form factors calculated in the direct method. The direct method tends
to give smaller value of the form factors, compared to the indirect one, thus
enhancing the proton life-time; indeed for the pi^0 final state the difference
between the two methods is quite appreciable.Comment: 56 pages, 17 figures, a comment and two references added in the
introduction, typo corrected in Eq.1
Hysteresis of spectral evolution in the soft state of black-hole binary LMC X-3
We report the discovery of hysteresis between the x-ray spectrum and
luminosity of black-hole binary LMC X-3. Our observations, with the
Proportional Counter Array on the Rossi X-ray Timing Explorer, took place
entirely within the soft spectral state, dominated by a spectral component that
was fitted well with a multicolor disk blackbody. A power-law component was
seen only during times when the luminosity of the disk blackbody was declining.
The x-ray luminosity at these times was comparable to that seen in transient
systems (x-ray novae) when they return to the hard state at the end of an
outburst. Our observations may represent partial transitions to the hard state;
complete transitions have been seen in this system by Wilms et al. (2001). If
they are related to the soft-to-hard transition in transients, then they
demonstrate that hysteresis effects can appear without a full state transition.
We discuss these observations in the context of earlier observations of
hysteresis within the hard state of binaries 1E 1740.7-2942 and GRS 1758-258
and in relation to published explanations of hysteresis in transients.Comment: 14 pages, 6 figures, accepted by The Astrophysical Journa
Strain relaxation in InGaN/GaN micro-pillars evidenced by high resolution cathodoluminescence hyperspectral imaging
A size-dependent strain relaxation and its effects on the optical properties of InGaN/GaN multiple quantum wells (QWs) in micro-pillars have been investigated through a combination of high spatial resolution cathodoluminescence (CL) hyperspectral imaging and numerical modeling. The pillars have diameters (d) ranging from 2 to 150 μm and were fabricated from a III-nitride light-emitting diode (LED) structure optimized for yellow-green emission at ∼560 nm. The CL mapping enables us to investigate strain relaxation in these pillars on a sub-micron scale and to confirm for the first time that a narrow (≤2 μm) edge blue-shift occurs even for the large InGaN/GaN pillars (d > 10 μm). The observed maximum blue-shift at the pillar edge exceeds 7 nm with respect to the pillar centre for the pillars with diameters in the 2–16 μm range. For the smallest pillar (d = 2 μm), the total blue-shift at the edge is 17.5 nm including an 8.2 nm “global” blue-shift at the pillar centre in comparison with the unetched wafer. By using a finite element method with a boundary condition taking account of a strained GaN buffer layer which was neglected in previous simulation works, the strain distribution in the QWs of these pillars was simulated as a function of pillar diameter. The blue-shift in the QWs emission wavelength was then calculated from the strain-dependent changes in piezoelectric field, and the consequent modification of transition energy in the QWs. The simulation and experimental results agree well, confirming the necessity for considering the strained buffer layer in the strain simulation. These results provide not only significant insights into the mechanism of strain relaxation in these micro-pillars but also practical guidance for design of micro/nano LEDs
Multi-qubit compensation sequences
The Hamiltonian control of n qubits requires precision control of both the
strength and timing of interactions. Compensation pulses relax the precision
requirements by reducing unknown but systematic errors. Using composite pulse
techniques designed for single qubits, we show that systematic errors for n
qubit systems can be corrected to arbitrary accuracy given either two
non-commuting control Hamiltonians with identical systematic errors or one
error-free control Hamiltonian. We also examine composite pulses in the context
of quantum computers controlled by two-qubit interactions. For quantum
computers based on the XY interaction, single-qubit composite pulse sequences
naturally correct systematic errors. For quantum computers based on the
Heisenberg or exchange interaction, the composite pulse sequences reduce the
logical single-qubit gate errors but increase the errors for logical two-qubit
gates.Comment: 9 pages, 5 figures; corrected reference formattin
Assessment of Flood Losses with Household Responses: Agent-Based Simulation in an Urban Catchment Area
Densely populated coastal urban areas are often exposed to multiple hazards, in particular floods and storms. Flood defenses and other engineering measures contribute to the mitigation of flood hazards, but a holistic approach to flood risk management should consider other interventions from the human side, including warning information, adaptive behavior, people/property evacuation, and the multilateral relief in local communities. There are few simulation approaches to consider these factors, and these typically focus on collective human actions. This paper presents an agent-based model that simulates flood response preferences and actions taken within individual households to reduce flood losses. The model implements a human response framework in w hich agents assess different flood scenarios according to warning information and decide whether and how much they invest in response measures to reduce potential inun- dation damages. A case study has been carried out in the Ng Tung River basin, an urbanized watershed in northern Hong Kong. Adopting a digital elevation model (DEM) as the modeling environment and a building map of household locations in the case area, the model considers the characteristics of households and the flood response behavior of their occupants. We found that property value, warning information, and storm conditions all influence household losses, with downstream and high density areas being particularly vulnerable. Results further indicate (i) that a flood warning system, which provides timely, accurate, and broad coverage rainstorm warning, can reduce flood losses by 30–40%; and (ii) to reduce losses, it is more effective and cheaper to invest early in response measures than late actions. This dynamic agent-based modeling approach is an innovative attempt to quantify and model the role of human responses in flood loss assessments. The model is demonstrated being useful for analyzing household scale flood losses and responses and it has the potential to contribute to flood emergency planning resource allocation in pluvial flood incidents
Fluctuation limits of strongly degenerate branching systems
Functional limit theorems for scaled fluctuations of occupation time
processes of a sequence of critical branching particle systems in with
anisotropic space motions and strongly degenerated splitting abilities are
proved in the cases of critical and intermediate dimensions. The results show
that the limit processes are constant measure-valued Wienner processes with
degenerated temporal and simple spatial structures.Comment: 15 page
- …