1,432 research outputs found
Magnetic Deflection Coefficient Investigation for Low Energy Particles
In this research we solved numerically Boltzmann transport equation in order to calculate the transport parameters, such as, drift velocity, W, D/? (ratio of diffusion coefficient to the mobility) and momentum transfer collision frequency ?m, for purpose of determination of magnetic drift velocity WM and magnetic deflection coefficient ? for low energy electrons, that moves in the electric field E, crossed with magnetic field B, i.e; E×B, in the nitrogen, Argon, Helium and it's gases mixtures as a function of: E/N (ratio of electric field strength to the number density of gas), E/P300 (ratio of electric field strength to the gas pressure) and D/? which covered a different ranges for E/P300 at temperatures 300°k (Kelvin).
The results showed had been tabulated and graphically represented as functions of their variables. These results a satisfactory agreement between experimental values and theoretical data given in the literature showed
Generating dynamical black hole solutions
We prove a theorem that characterizes a large family of non-static solutions
to Einstein equations, representing, in general, spherically symmetric Type II
fluid. It is shown that the best known dynamical black hole solutions to
Einstein equations are particular cases from this family. Thus we extend a
recent work of Salgado \cite{ms} to non-static case. The spherically symmetric
static black hole solutions, for Type I fluid, are also retrieved.Comment: 8 Pages, RevTe
Whole-exome sequencing in a consanguineous Pakistani family identifies a mutational hotspot in the COL7A1 gene, causing recessive dystrophic epidermolysis bullosa
Dystrophic epidermolysis bullosa is a major form of epidermolysis bullosa and may be inherited as an autosomal dominant or recessive trait, with associated mutations in the COL7A1 gene. Here, we describe a consanguineous Pakistani family with four affected individuals suffering from recessive dystrophic epidermolysis bullosa. Exome sequencing of the proband's DNA revealed a homozygous missense variant (c.8038G>A:p.Gly2680Ser) in COL7A1 which cosegregated with disease in the family. The emergence of this particular glycine substitution in patients from diverse ethnic backgrounds such as China, United Kingdom, Poland, Iran, and Pakistan indicates that this variant most likely constitutes a recurrent mutational hotspot in the COL7A1 gene, rather than a germline mutation present at low levels in the general population
Thermal Model of Rotary Friction Welding for Similar and Dissimilar Metals
Friction welding is one of the foremost welding processes for similar and dissimilar metals. Previously, the process has been modeled utilizing the rudimentary techniques of constant friction and slip-stick friction. The motivation behind this article is to present a new characteristic for temperature profile estimation in modeling of the rotary friction welding process. For the first time, a unified model has been exhibited, with an implementation of the phase transformation of similar and dissimilar materials. The model was generated on COMSOL Multiphysics® and thermal and structural modules were used to plot the temperature curve. The curve for the welding of dissimilar metals using the model was generated, compared and analyzed with that of practical curves already acquired through experimentation available in the literature, and then the effect of varying the parameters on the welding of similar metals was also studied
Inaccuracy of Death Certificate Diagnosis of Tuberculosis and Potential Underdiagnosis of TB in a Region of High HIV Prevalence
Despite the South African antiretroviral therapy rollout, which should reduce the incidence of HIV-associated tuberculosis (TB), the number of TB-attributable deaths in KwaZuluNatal (KZN) remains high. TB is often diagnosed clinically, without microbiologic confirmation, leading to inaccurate estimates of TB-attributed deaths. This may contribute to avoidable deaths, and impact population-based TB mortality estimates.
Objectives. (1) To measure the number of cases with microbiologically confirmed TB in a retrospective cohort of deceased inpatients with TB-attributed hospital deaths. (2) To estimate the rates of multi-drug resistant (MDR) and extensively drug resistant (XDR) TB in this cohort. Results. Of 2752 deaths at EDH between September 2006 and March 2007, 403 (15%) were attributed to TB on the death certificate. 176 of the TB-attributed deaths (44%) had a specimen sent for smear or culture; only 64 (36%) had a TB diagnosis confirmed by either test. Of the 39 culture-confirmed cases, 27/39 (69%) had fully susceptible TB and 27/39 (69%) had smear-negative culture-positive TB (SNTB). Two patients had drug monoresistance, three patients had MDR-TB, and one had XDR-TB. Conclusions. Most TB-attributed deaths in this cohort were not microbiologically confirmed. Of confirmed cases, most were smear-negative, culture positive and were susceptible to all first line drugs
Thermodynamic structure of Lanczos-Lovelock field equations from near-horizon symmetries
It is well known that, for a wide class of spacetimes with horizons, Einstein
equations near the horizon can be written as a thermodynamic identity. It is
also known that the Einstein tensor acquires a highly symmetric form near
static, as well as stationary, horizons. We show that, for generic static
spacetimes, this highly symmetric form of the Einstein tensor leads quite
naturally and generically to the interpretation of the near-horizon field
equations as a thermodynamic identity. We further extend this result to generic
static spacetimes in Lanczos-Lovelock gravity, and show that the near-horizon
field equations again represent a thermodynamic identity in all these models.
These results confirm the conjecture that this thermodynamic perspective of
gravity extends far beyond Einstein's theory.Comment: RevTeX 4; 10 pages; no figure
A Robust Deep Model for Classification of Peptic Ulcer and Other Digestive Tract Disorders Using Endoscopic Images
Accurate patient disease classification and detection through deep-learning (DL) models are increasingly contributing to the area of biomedical imaging. The most frequent gastrointestinal (GI) tract ailments are peptic ulcers and stomach cancer. Conventional endoscopy is a painful and hectic procedure for the patient while Wireless Capsule Endoscopy (WCE) is a useful technology for diagnosing GI problems and doing painless gut imaging. However, there is still a challenge to investigate thousands of images captured during the WCE procedure accurately and efficiently because existing deep models are not scored with significant accuracy on WCE image analysis. So, to prevent emergency conditions among patients, we need an efficient and accurate DL model for real-time analysis. In this study, we propose a reliable and efficient approach for classifying GI tract abnormalities using WCE images by applying a deep Convolutional Neural Network (CNN). For this purpose, we propose a custom CNN architecture named GI Disease-Detection Network (GIDD-Net) that is designed from scratch with relatively few parameters to detect GI tract disorders more accurately and efficiently at a low computational cost. Moreover, our model successfully distinguishes GI disorders by visualizing class activation patterns in the stomach bowls as a heat map. The Kvasir-Capsule image dataset has a significant class imbalance problem, we exploited a synthetic oversampling technique BORDERLINE SMOTE (BL-SMOTE) to evenly distribute the image among the classes to prevent the problem of class imbalance. The proposed model is evaluated against various metrics and achieved the following values for evaluation metrics: 98.9%, 99.8%, 98.9%, 98.9%, 98.8%, and 0.0474 for accuracy, AUC, F1-score, precision, recall, and loss, respectively. From the simulation results, it is noted that the proposed model outperforms other state-of-the-art models in all the evaluation metrics
Estimating the Disease Burden of Pandemic (H1N1) 2009 Virus Infection in Hunter New England, Northern New South Wales, Australia, 2009
Introduction: On May 26, 2009, the first confirmed case of Pandemic (H1N1) 2009 virus (pH1N1) infection in Hunter New England (HNE), New South Wales (NSW), Australia (population 866,000) was identified. We used local surveillance data to estimate pH1N1-associated disease burden during the first wave of pH1N1 circulation in HNE. Methods: Surveillance was established during June 1-August 30, 2009, for: 1) laboratory detection of pH1N1 at HNE and NSW laboratories, 2) pH1N1 community influenza-like illness (ILI) using an internet survey of HNE residents, and 3) pH1N1-associated hospitalizations and deaths using respiratory illness International Classification of Diseases 10 codes at 35 HNE hospitals and mandatory reporting of confirmed pH1N1-associated hospitalizations and deaths to the public health service. The proportion of pH1N1 positive specimens was applied to estimates of ILI, hospitalizations, and deaths to estimate disease burden. Results: Of 34,177 specimens tested at NSW laboratories, 4,094 (12%) were pH1N1 positive. Of 1,881 specimens from patients evaluated in emergency departments and/or hospitalized, 524 (26%) were pH1N1 positive. The estimated number of persons with pH1N1-associated ILI in the HNE region was 53,383 (range 37,828–70,597) suggesting a 6.2% attack rate (range 4.4–8.2%). An estimated 509 pH1N1-associated hospitalizations (range 388–630) occurred (reported: 184), and up to 10 pH1N1-associated deaths (range 8–13) occurred (reported: 5). The estimated case hospitalization ratio was 1% and case fatality ratio was 0.02%. Discussion: The first wave of pH1N1 activity in HNE resulted in symptomatic infection in a small proportion of the population, and the number of HNE pH1N1-associated hospitalizations and deaths is likely higher than officially reported
Transcript copy number estimation using a mouse whole-genome oligonucleotide microarray
The ability to quantitatively measure the expression of all genes in a given tissue or cell with a single assay is an exciting promise of gene-expression profiling technology. An in situ-synthesized 60-mer oligonucleotide microarray designed to detect transcripts from all mouse genes was validated, as well as a set of exogenous RNA controls derived from the yeast genome (made freely available without restriction), which allow quantitative estimation of absolute endogenous transcript abundance
Micro-CT Imaging of Tracheal Development in Down Syndrome and Non-Down Syndrome Fetuses
Objectives: Down syndrome (DS) is associated with airway abnormalities including a narrowed trachea. It is uncertain whether this narrowed trachea in DS is a consequence of deviant fetal development or an acquired disorder following endotracheal intubation after birth. This study aimed to compare the tracheal morphology in DS and non-DS fetuses using microfocus computed tomography (micro-CT). Methods: Twenty fetal samples were obtained from the Dutch Fetal Biobank and divided into groups based on gestational age. Micro-CT images were processed to analyze tracheal length, volume, and cross-sectional area (CSA). Results: Mean tracheal length and tracheal volume were similar in DS and non-DS fetuses for all gestational age groups. Mean, minimum, and maximal tracheal CSA were statistically significantly increased in the single DS fetus in the group of 21–24 weeks of gestation, but not in other gestational age groups. In 90% of all studied fetuses, the minimum tracheal CSA was located in the middle third of the trachea. Conclusion: Tracheal development in DS fetuses was similar to non-DS fetuses between 13 and 21 weeks of gestation. This suggests that the narrowed tracheal diameter in DS children may occur later in fetal development or results from postnatal intubation trauma. The narrowest part of the trachea is in majority of DS and non-DS fetuses the middle third. Level of Evidence: Level 3 Laryngoscope, 2024.</p
- …