24 research outputs found

    Schematic diagram of loading paths.

    No full text
    (a) Load-holding at different levels. (b) Cyclic loading and unloading.</p

    Manual tapping test positioning result.

    No full text
    To study fracture mechanisms and initiation of stress fields in the rock mass around a roadway subjected to cyclic stress, a series of loading and unloading tests were conducted on the rock mass around the roadway by using high-precision acoustic emission (AE) monitoring. The results show that intense AE activities occur in a specimen during cyclic load-holding at different levels. With the increase in the number of cycles, the overall stability of the specimen gradually decreases. In the cyclic loading and unloading process, the specimen exhibits a Kaiser effect. As the number of cycles increases, more AE events occur in the unloading stage and a Felicity effect is manifest. The spatial distribution of AE events is related to the stress regime and structure of the specimen, crack propagation in the roadway exhibits directionality due to effects of the principal stress. High stress is conducive to microcrack initiation and propagation in the specimen, which accelerates damage accumulation and macrofracture formation in a rock mass. The research provides a reference for roadway support work and disaster prevention and control in deep mines.</div

    Test schemes.

    No full text
    To study fracture mechanisms and initiation of stress fields in the rock mass around a roadway subjected to cyclic stress, a series of loading and unloading tests were conducted on the rock mass around the roadway by using high-precision acoustic emission (AE) monitoring. The results show that intense AE activities occur in a specimen during cyclic load-holding at different levels. With the increase in the number of cycles, the overall stability of the specimen gradually decreases. In the cyclic loading and unloading process, the specimen exhibits a Kaiser effect. As the number of cycles increases, more AE events occur in the unloading stage and a Felicity effect is manifest. The spatial distribution of AE events is related to the stress regime and structure of the specimen, crack propagation in the roadway exhibits directionality due to effects of the principal stress. High stress is conducive to microcrack initiation and propagation in the specimen, which accelerates damage accumulation and macrofracture formation in a rock mass. The research provides a reference for roadway support work and disaster prevention and control in deep mines.</div

    Spatial evolution characteristics of cumulative AE events.

    No full text
    Spatial evolution characteristics of cumulative AE events.</p

    Arrangement of AE sensors in the specimen.

    No full text
    To study fracture mechanisms and initiation of stress fields in the rock mass around a roadway subjected to cyclic stress, a series of loading and unloading tests were conducted on the rock mass around the roadway by using high-precision acoustic emission (AE) monitoring. The results show that intense AE activities occur in a specimen during cyclic load-holding at different levels. With the increase in the number of cycles, the overall stability of the specimen gradually decreases. In the cyclic loading and unloading process, the specimen exhibits a Kaiser effect. As the number of cycles increases, more AE events occur in the unloading stage and a Felicity effect is manifest. The spatial distribution of AE events is related to the stress regime and structure of the specimen, crack propagation in the roadway exhibits directionality due to effects of the principal stress. High stress is conducive to microcrack initiation and propagation in the specimen, which accelerates damage accumulation and macrofracture formation in a rock mass. The research provides a reference for roadway support work and disaster prevention and control in deep mines.</div

    Time series data: AE events.

    No full text
    To study fracture mechanisms and initiation of stress fields in the rock mass around a roadway subjected to cyclic stress, a series of loading and unloading tests were conducted on the rock mass around the roadway by using high-precision acoustic emission (AE) monitoring. The results show that intense AE activities occur in a specimen during cyclic load-holding at different levels. With the increase in the number of cycles, the overall stability of the specimen gradually decreases. In the cyclic loading and unloading process, the specimen exhibits a Kaiser effect. As the number of cycles increases, more AE events occur in the unloading stage and a Felicity effect is manifest. The spatial distribution of AE events is related to the stress regime and structure of the specimen, crack propagation in the roadway exhibits directionality due to effects of the principal stress. High stress is conducive to microcrack initiation and propagation in the specimen, which accelerates damage accumulation and macrofracture formation in a rock mass. The research provides a reference for roadway support work and disaster prevention and control in deep mines.</div

    Temporal changes in the distribution of apparent stress.

    No full text
    (a) S1-1. (b) S2-3. (c) S3-2. (d) S4-1. (e) Legend.</p

    Test model and loading system.

    No full text
    To study fracture mechanisms and initiation of stress fields in the rock mass around a roadway subjected to cyclic stress, a series of loading and unloading tests were conducted on the rock mass around the roadway by using high-precision acoustic emission (AE) monitoring. The results show that intense AE activities occur in a specimen during cyclic load-holding at different levels. With the increase in the number of cycles, the overall stability of the specimen gradually decreases. In the cyclic loading and unloading process, the specimen exhibits a Kaiser effect. As the number of cycles increases, more AE events occur in the unloading stage and a Felicity effect is manifest. The spatial distribution of AE events is related to the stress regime and structure of the specimen, crack propagation in the roadway exhibits directionality due to effects of the principal stress. High stress is conducive to microcrack initiation and propagation in the specimen, which accelerates damage accumulation and macrofracture formation in a rock mass. The research provides a reference for roadway support work and disaster prevention and control in deep mines.</div

    Abdominal Aortic Intimal Flap Motion Characterization in Acute Aortic Dissection: Assessed with Retrospective ECG-Gated Thoracoabdominal Aorta Dual-Source CT Angiography

    Get PDF
    <div><p>Objectives</p><p>To evaluate the feasibility of dose-modulated retrospective ECG-gated thoracoabdominal aorta CT angiography (CTA) assessing abdominal aortic intimal flap motion and investigate the motion characteristics of intimal flap in acute aortic dissection (AAD).</p><p>Materials and Methods</p><p>49 patients who had thoracoabdominal aorta retrospective ECG-gated CTA scan were enrolled. 20 datasets were reconstructed in 5% steps between 0 and 95% of the R-R interval in each case. The aortic intimal flap motion was assessed by measuring the short axis diameters of the true lumen and false lumen 2 cm above of celiac trunk ostium in different R-R intervals. Intimal flap motion and configuration was assessed by two independent observers.</p><p>Results</p><p>In these 49 patients, 37 had AAD, 7 had intramural hematoma, and 5 had negative result for acute aortic disorder. 620 datasets of 31 patients who showed double lumens in abdominal aorta were enrolled in evaluating intimal flap motion. The maximum and minimum true lumen diameter were 12.2±4.1 mm (range 2.6∼17.4) and 6.7±4.1 mm (range 0∼15.3) respectively. The range of intimal flap motion in all patients was 5.5±2.6 mm (range 1.8∼10.2). The extent of maximum true lumen diameter decreased during a cardiac cycle was 49.5%±23.5% (range 12%∼100%). The maximum motion phase of true lumen diameter was in systolic phase (5%∼40% of R-R interval). Maximum and minimum intimal flap motion was at 15% and 75% of the R-R interval respectively. Intimal flap configuration had correlation with the phase of cardiac cycle.</p><p>Conclusions</p><p>Abdominal intimal flap position and configuration varied greatly during a cardiac cycle. Retrospective ECG-gated thoracoabdominal aorta CTA can reflect the actual status of the true lumen and provide more information about true lumen collapse. This information may be helpful to diagnosis and differential diagnosis of dynamic abstraction.</p></div

    The frequency distributions of MMP and intimal flap motion artifacts during a cardiac cycle.

    No full text
    <p>The MMP of all cases was at systolic phase (5%∼40% of R-R interval) and the peak was found at 15% of the R-R interval. Most intimal flap motion artifacts were founded at systolic phase. Datasets acquired at 70% R-R interval had no intimal flap motion artifacts.</p
    corecore