2,050 research outputs found

    Penetrators (penetrating sondes) and new possibilities for study of the planets

    Get PDF
    The fields of possible use of penetrators in space research are considered. A survey of the condition of development and plans for use of penetrators abroad is presented and an analysis is given of the significance of scientific problems when probing planets

    Gas gain on single wire chambers filled with pure isobutane at low pressure

    Full text link
    The gas gain of single-wire chambers filled with isobutane, with cell cross-section 12x12 mm and wire diameters of 15, 25, 50 and 100 μ\mum, has been measured at pressures ranging 12-92 Torr. Contrary to the experience at atmospheric pressure, at very low pressures the gas gain on thick wires is higher than that on thin wires at the same applied high voltage as was recently shown. Bigger wire diameters should be used in wire chambers operating at very low pressure if multiple scattering on wires is not an issue.Comment: 9 pages, 6 figure

    The oxygen isotope effect on critical temperature in superconducting copper oxides

    Full text link
    The isotope effect provided a crucial key to the development of the BCS (Bardeen-Cooper-Schrieffer) microscopic theory of superconductivity for conventional superconductors. In superconducting cooper oxides (cuprates) showing an unconventional type of superconductivity, the oxygen isotope effect is very peculiar: the exponential coefficient strongly depends on doping level. No consensus has been reached so far on the origin of the isotope effect in the cuprates. Here we show that the oxygen isotope effect in cuprates is in agreement with the bisoliton theory of superconductivity.Comment: 3 pages including 4 figures; version 2 is with minor correction

    Quadrupole transitions near interface: general theory and application to atom inside a planar cavity

    Full text link
    Quadrupole radiation of an atom in an arbitrary environment is investigated within classical as well as quantum electrodynamical approaches. Analytical expressions for decay rates are obtained in terms of Green function of Maxwell equations. The equivalence of both approaches is shown. General expressions are applied to analyze the quadrupole decay rate of an atom placed between two half spaces with arbitrary dielectric constant. It is shown that in the case when the atom is close to the surface, the total decay rate is inversely proportional to the fifth power of distance between an atom and a plane interface.Comment: 18 pages, 7 figure

    Anomalous tunneling of bound pairs in crystal lattices

    Full text link
    A novel method of solving scattering problems for bound pairs on a lattice is developed. Two different break ups of the hamiltonian are employed to calculate the full Green operator and the wave function of the scattered pair. The calculation converges exponentially in the number of basis states used to represent the non-translation invariant part of the Green operator. The method is general and applicable to a variety of scattering and tunneling problems. As the first application, the problem of pair tunneling through a weak link on a one-dimensional lattice is solved. It is found that at momenta close to \pi the pair tunnels much easier than one particle, with the transmission coefficient approaching unity. This anomalously high transmission is a consequence of the existence of a two-body resonant state localized at the weak link.Comment: REVTeX, 5 pages, 4 eps figure

    Tensor polarization of deuterons passing through matter

    Full text link
    It is shown that the magnitude of tensor polarization of the deuteron beam, which arises owing to the spin dichroism effect, depends appreciably on the angular width of the detector that registers the deuterons transmitted through the target. Even when the angular width of the detector is much smaller than the mean square angle of multiple Coulomb scattering, the beam's tensor polarization depends noticeably on rescattering. When the angular width of the detector is much larger than the mean square angle of multiple Coulomb scattering (as well as than the characteristic angle of elastic nuclear scattering), tensor polarization is determined only by the total reaction cross sections for deuteron-nucleus interaction, and elastic scattering processes make no contribution to tensor polarization.Comment: 18 pages, 3 figures, to be published in IO

    The Angular Momentum Operator in the Dirac Equation

    Full text link
    The Dirac equation in spherically symmetric fields is separated in two different tetrad frames. One is the standard cartesian (fixed) frame and the second one is the diagonal (rotating) frame. After separating variables in the Dirac equation in spherical coordinates, and solving the corresponding eingenvalues equations associated with the angular operators, we obtain that the spinor solution in the rotating frame can be expressed in terms of Jacobi polynomials, and it is related to the standard spherical harmonics, which are the basis solution of the angular momentum in the Cartesian tetrad, by a similarity transformation.Comment: 13 pages,CPT-94/P.3027,late
    corecore