2,050 research outputs found
Penetrators (penetrating sondes) and new possibilities for study of the planets
The fields of possible use of penetrators in space research are considered. A survey of the condition of development and plans for use of penetrators abroad is presented and an analysis is given of the significance of scientific problems when probing planets
Gas gain on single wire chambers filled with pure isobutane at low pressure
The gas gain of single-wire chambers filled with isobutane, with cell
cross-section 12x12 mm and wire diameters of 15, 25, 50 and 100 m, has
been measured at pressures ranging 12-92 Torr. Contrary to the experience at
atmospheric pressure, at very low pressures the gas gain on thick wires is
higher than that on thin wires at the same applied high voltage as was recently
shown. Bigger wire diameters should be used in wire chambers operating at very
low pressure if multiple scattering on wires is not an issue.Comment: 9 pages, 6 figure
The oxygen isotope effect on critical temperature in superconducting copper oxides
The isotope effect provided a crucial key to the development of the BCS
(Bardeen-Cooper-Schrieffer) microscopic theory of superconductivity for
conventional superconductors. In superconducting cooper oxides (cuprates)
showing an unconventional type of superconductivity, the oxygen isotope effect
is very peculiar: the exponential coefficient strongly depends on doping level.
No consensus has been reached so far on the origin of the isotope effect in the
cuprates. Here we show that the oxygen isotope effect in cuprates is in
agreement with the bisoliton theory of superconductivity.Comment: 3 pages including 4 figures; version 2 is with minor correction
Quadrupole transitions near interface: general theory and application to atom inside a planar cavity
Quadrupole radiation of an atom in an arbitrary environment is investigated
within classical as well as quantum electrodynamical approaches. Analytical
expressions for decay rates are obtained in terms of Green function of Maxwell
equations. The equivalence of both approaches is shown. General expressions are
applied to analyze the quadrupole decay rate of an atom placed between two half
spaces with arbitrary dielectric constant. It is shown that in the case when
the atom is close to the surface, the total decay rate is inversely
proportional to the fifth power of distance between an atom and a plane
interface.Comment: 18 pages, 7 figure
Anomalous tunneling of bound pairs in crystal lattices
A novel method of solving scattering problems for bound pairs on a lattice is
developed. Two different break ups of the hamiltonian are employed to calculate
the full Green operator and the wave function of the scattered pair. The
calculation converges exponentially in the number of basis states used to
represent the non-translation invariant part of the Green operator. The method
is general and applicable to a variety of scattering and tunneling problems. As
the first application, the problem of pair tunneling through a weak link on a
one-dimensional lattice is solved. It is found that at momenta close to \pi the
pair tunnels much easier than one particle, with the transmission coefficient
approaching unity. This anomalously high transmission is a consequence of the
existence of a two-body resonant state localized at the weak link.Comment: REVTeX, 5 pages, 4 eps figure
Tensor polarization of deuterons passing through matter
It is shown that the magnitude of tensor polarization of the deuteron beam,
which arises owing to the spin dichroism effect, depends appreciably on the
angular width of the detector that registers the deuterons transmitted through
the target. Even when the angular width of the detector is much smaller than
the mean square angle of multiple Coulomb scattering, the beam's tensor
polarization depends noticeably on rescattering. When the angular width of the
detector is much larger than the mean square angle of multiple Coulomb
scattering (as well as than the characteristic angle of elastic nuclear
scattering), tensor polarization is determined only by the total reaction cross
sections for deuteron-nucleus interaction, and elastic scattering processes
make no contribution to tensor polarization.Comment: 18 pages, 3 figures, to be published in IO
The Angular Momentum Operator in the Dirac Equation
The Dirac equation in spherically symmetric fields is separated in two
different tetrad frames. One is the standard cartesian (fixed) frame and the
second one is the diagonal (rotating) frame. After separating variables in the
Dirac equation in spherical coordinates, and solving the corresponding
eingenvalues equations associated with the angular operators, we obtain that
the spinor solution in the rotating frame can be expressed in terms of Jacobi
polynomials, and it is related to the standard spherical harmonics, which are
the basis solution of the angular momentum in the Cartesian tetrad, by a
similarity transformation.Comment: 13 pages,CPT-94/P.3027,late
- …