8 research outputs found

    Effect of garlic derivative s-allylcysteine (SAC) on the growth of human esophagealand nasopharyngeal carcinoma cells

    No full text
    published_or_final_versionMedical SciencesMasterMaster of Medical Science

    Evidence of (gamma)-Tocotrienol as an apoptosis-inducing, invasion-suppressing, and chemotherapy drug-sensitizing agent in human melanoma cells

    No full text
    To date, the most effective cure for metastatic melanoma remains the surgical resection of the primary tumor. Recently, tocotrienol-rich-fraction has shown antiproliferative effect on cancer cells. To elucidate this anticancer property in malignant melanoma, this study aimed, first, to identify the most potent isomer for eliminating melanoma cells and second to decipher the molecular pathway responsible for its activity. Results showed that the inhibitory effect of gamma-tocotrienol was most potent, which resulted in induction of apoptosis as evidenced by activation of procaspases and the accumulation of sub-G1 cell population. Examination of the prosurvival genes revealed that the gamma-tocotrienol-induced cell death was associated with suppression of NF-kappaB, EGF-R, and Id family proteins. Meanwhile, gamma-tocotrienol treatment also resulted in induction of JNK signaling pathway, and inhibition of JNK activity by selective inhibitor was able to partially block the effect of gamma-tocotrienol. Interestingly, gamma-tocotrienol treatment led to suppression of mesenchymal markers and the restoration of E-cadherin and gamma-catenin expression, which was associated with suppression of cell invasion capability. Furthermore, synergistic effect was observed when cells were cotreated with gamma-tocotrienol and chemotherapy drugs. Together, our results demonstrated for the first time the anti-invasion and chemonsensitization effect of gamma-tocotrienol against human malignant melanoma cells.link_to_subscribed_fulltex

    Effects of PSP on CSC properties.

    No full text
    <p>A) Spheroid formation assay was performed with PC-3 and Du145 cells. Two hundred of cells were seeded onto polyHEMA pre-coated plates and treated with either 500 µg/mL of PSP or vehicle for 14 days. The number of prostaspheres formed was counted, and the result was presented as the mean ± s.d. Note that γ-T3 treatment efficiently suppresses the spheroid formation ability of PC-3 cells. Image of the prostaspheres was captured under microscope. Note that no prostaspheres can be found in cells treated with 500 µg/mL of PSP. (B) PSP inhibited the formation of secondary prostaspheres. Primary prostaspheres were dissociated and re-seeded into polyHEMA pre-coated plate. PSP was added 24 hr after the plating. Note that prostasphere formation was inhibited by more than 70% and 90% in the presence of 250 µg/mL and 500 µg/mL of PSP respectively. * <i>P</i><0.001, ** <i>P</i><0.0001, <i>t</i> test.</p

    Effect of PSP on PIN development in the TgMAP transgenic mouse model.

    No full text
    <p>A) Time frame of the PIN and PCa development in TgMAP mice and the schedule of the PSP treatment. Fourteen-week old TgMAP mice were treated with 200 mg/kg of PSP by oral gavage feeding for 4 weeks and sacrificed at the time when PIN has developed (20 weeks old). The table summarizes the results of the histology examination of the prostate from the vehicle- and PSP-treated TgMAP mice. C) Representative photos of the Hematoxylin & Eosin staining of the prostatic tissues from the TgMAP mice. Note that both control- and PSP-treated TgMAP mice developed prostatic intraepithelial neoplasia (PIN), as indicated by the arrows.</p

    PSP down-regulates prostate CSC markers in PC-3 cells.

    No full text
    <p>A) Western blotting of prostate CSC markers CD44 and CD133 in PC-3 cells after PSP treatment. Note that PSP significantly down-regulates both stem cell markers in a dose- and time-dependent manner. B) Viability of PC-3 cells after treatment with 5, 25, 125, 250 and 500 µg/ml of PSP for 48 or 72 hr was measured with MTT assay. Results are presented as mean ± s.d. C) Flow cytometry analysis of PC-3 cells after treatment with 250 µg/ml of PSP for 72 hr. Note that no significant difference in cell cycle distribution was observed. D) Western blotting results for apoptotic markers (left panel) and stem cell maintenance proteins (right panel) in PC-3 cells after PSP treatment. Note that no changes in Bax and Bcl-2 or cleavage of PARP were detected.</p

    Effect of PSP on prostate tumor development of the TgMAP transgenic mouse model.

    No full text
    <p>A) Outline of the schedule for PSP treatment. Eight-week old TgMAP mice were treated with 300 mg/kg of PSP by oral gavage feeding for 20 weeks and sacrificed at age of 28 weeks. B & C) Representative photos of the Hematoxylin & Eosin staining of the prostate tissues from the vehicle and PSP-treated TgMAP mice. Note that tumors were found in all of the mice that were treated with vehicle only but were absent in all the PSP-treated mice. D) The table summarizes the results of the histology examination of the prostate tissues from the vehicle and PSP-treated TgMAP mice. *P<0.05 compared to control treatment by Fisher's exact test. E) Average body weight of the mice during the PSP treatment.</p

    Correction: Chemopreventive Effect of PSP Through Targeting of Prostate Cancer Stem Cell-Like Population

    Get PDF
    Recent evidence suggested that prostate cancer stem/progenitor cells (CSC) are responsible for cancer initiation as well as disease progression. Unfortunately, conventional therapies are only effective in targeting the more differentiated cancer cells and spare the CSCs. Here, we report that PSP, an active component extracted from the mushroom Turkey tail (also known as Coriolus versicolor), is effective in targeting prostate CSCs. We found that treatment of the prostate cancer cell line PC-3 with PSP led to the down-regulation of CSC markers (CD133 and CD44) in a time and dose-dependent manner. Meanwhile, PSP treatment not only suppressed the ability of PC-3 cells to form prostaspheres under non-adherent culture conditions, but also inhibited their tumorigenicity in vivo, further proving that PSP can suppress prostate CSC properties. To investigate if the anti-CSC effect of PSP may lead to prostate cancer chemoprevention, transgenic mice (TgMAP) that spontaneously develop prostate tumors were orally fed with PSP for 20 weeks. Whereas 100% of the mice that fed with water only developed prostate tumors at the end of experiment, no tumors could be found in any of the mice fed with PSP, suggesting that PSP treatment can completely inhibit prostate tumor formation. Our results not only demonstrated the intriguing anti-CSC effect of PSP, but also revealed, for the first time, the surprising chemopreventive property of oral PSP consumption against prostate cancer
    corecore