8 research outputs found

    Transient Supramolecular Interactions for Templating Peptide Folding and Designing New Self-Healing Polymers

    No full text
    Engineering transient interactions is a powerful method that can be used to encode structure and function in chemical systems. This is the common theme in all three chapters of this dissertation, despite the slight differences in initial motivations. I begin my dissertation by describing my efforts to direct peptide folding in organic environments using supramolecular amino acids (SAAs). The incorporated supramolecular motif has a strong driving force to dimerize in a sequence- and orientation-specific manner. By introducing SAAs into the primary sequence of peptides, we envisioned to perturb the native hydrogen bond patterns and facilitate the folding of the peptides through specific and directional dimerization of the supramolecular units.In Chapter 2, I describe the synthesis and characterization of a new self-healing multiphase polymer, in which, a pervasive network of dynamic metal-ligand (zinc-imidazole) interactions are programmed in the soft matrix of a hard/soft two-phase brush copolymer system. Following mechanical damage, these thermoplastic elastomers show excellent self-healing ability under ambient conditions without any intervention. The mechanical and dynamic properties of the materials can be tuned by varying a number of molecular parameters (e.g., backbone/brush degree of polymerization and brush density) as well as the ligand/metal ratio. This chapter concludes by noting an attempt to correlate the observed mechanical properties to the small molecule parameters of metal-ligand complexes.Synthesis of multiphasic self-healing polymers prepared from simple commercially-available monomers in a facile and scalable manner was the motivation behind the work described in the Chapter 3. The mechanical properties of these new polymers are easily tunable across a broad range (from soft rubber to hard plastic) by changing several molecular parameters. Self-healing ability was investigated at mild conditions, and most notably, most samples demonstrate excellent self-healing abilities with minimal intervention

    Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics

    No full text
    In conventional polymer materials, mechanical performance is traditionally engineered via material structure, using motifs such as polymer molecular weight, polymer branching, or block copolymer design. Here, by means of a model system of 4-arm poly(ethylene glycol) hydrogels crosslinked with multiple, kinetically distinct dynamic metal-ligand coordinate complexes, we show that polymer materials with decoupled spatial structure and mechanical performance can be designed. By tuning the relative concentration of two types of metal-ligand crosslinks, we demonstrate control over the material's mechanical hierarchy of energy-dissipating modes under dynamic mechanical loading, and therefore the ability to engineer a priori the viscoelastic properties of these materials by controlling the types of crosslinks rather than by modifying the polymer itself. This strategy to decouple material mechanics from structure is general and may inform the design of soft materials for use in complex mechanical environments. Three examples that demonstrate this are provided.National Science Foundation (U.S.) (Award DMR-0819762)National Science Foundation (U.S.) (Award DMR-1419807
    corecore