4 research outputs found

    Comparative transcriptomics and metabolomics reveal specialized metabolite drought stress responses in switchgrass (<i>Panicum virgatum</i> L.)

    Get PDF
    â‹… Switchgrass (Panicum virgatum) is a bioenergy model crop valued for its energy efficiency and drought tolerance resilience. The related monocot species rice (Oryza sativa) and maize (Zea mays) deploy species-specific, specialized metabolites as core stress defenses. By contrast, specialized chemical defenses in switchgrass are largely unknown. â‹… To investigate specialized metabolic drought responses in switchgrass, we integrated tissue-specific transcriptome and metabolite analyses of the genotypes Alamo and Cave-in-Rock that feature different drought tolerance. â‹… The more drought-susceptible Cave-in-Rock featured an earlier onset of transcriptomic changes and significantly more differentially expressed genes in response to drought compared to Alamo. Specialized pathways showed moderate differential expression compared to pronounced transcriptomic alterations in carbohydrate and amino acid metabolism. However, diterpenoid-biosynthetic genes showed drought-inducible expression in Alamo roots, contrasting largely unaltered triterpenoid and phenylpropanoid pathways. Metabolomic analyses identified common and genotype-specific flavonoids and terpenoids. Consistent with transcriptomic alterations, several root diterpenoids showed significant drought-induced accumulation, whereas triterpenoid abundance remained predominantly unchanged. Structural analysis of drought-responsive root diterpenoids verified these metabolites as oxygenated furanoditerpenoids. â‹… Drought-dependent transcriptome and metabolite profiles provide the foundation to understand the molecular mechanisms underlying switchgrass environmental resilience. Accumulation of specialized root diterpenoids and corresponding pathway transcripts supports a role in drought stress tolerance for these compounds

    Cytochrome P450-catalyzed biosynthesis of furanoditerpenoids in the bioenergy crop switchgrass (Panicum virgatum L.).

    No full text
    Specialized diterpenoid metabolites are important mediators of plant-environment interactions in monocot crops. To understand metabolite functions in plant environmental adaptation that ultimately can enable crop improvement strategies, a deeper knowledge of the underlying species-specific biosynthetic pathways is required. Here, we report the genomics-enabled discovery of five cytochrome P450 monooxygenases (CYP71Z25-CYP71Z29) that form previously unknown furanoditerpenoids in the monocot bioenergy crop Panicum virgatum (switchgrass). Combinatorial pathway reconstruction showed that CYP71Z25-CYP71Z29 catalyze furan ring addition directly to primary diterpene alcohol intermediates derived from distinct class II diterpene synthase products. Transcriptional co-expression patterns and the presence of select diterpenoids in switchgrass roots support the occurrence of P450-derived furanoditerpenoids in planta. Integrating molecular dynamics, structural analysis and targeted mutagenesis identified active site determinants that contribute to the distinct catalytic specificities underlying the broad substrate promiscuity of CYP71Z25-CYP71Z29 for native and non-native diterpenoids
    corecore