6,630 research outputs found

    Post-Impact Thermal Evolution of Porous Planetesimals

    Full text link
    Impacts between planetesimals have largely been ruled out as a heat source in the early Solar System, by calculations that show them to be an inefficient heat source and unlikely to cause global heating. However, the long-term, localized thermal effects of impacts on planetesimals have never been fully quantified. Here, we simulate a range of impact scenarios between planetesimals to determine the post-impact thermal histories of the parent bodies, and hence the importance of impact heating in the thermal evolution of planetesimals. We find on a local scale that heating material to petrologic type 6 is achievable for a range of impact velocities and initial porosities, and impact melting is possible in porous material at a velocity of > 4 km/s. Burial of heated impactor material beneath the impact crater is common, insulating that material and allowing the parent body to retain the heat for extended periods (~ millions of years). Cooling rates at 773 K are typically 1 - 1000 K/Ma, matching a wide range of measurements of metallographic cooling rates from chondritic materials. While the heating presented here is localized to the impact site, multiple impacts over the lifetime of a parent body are likely to have occurred. Moreover, as most meteorite samples are on the centimeter to meter scale, the localized effects of impact heating cannot be ignored.Comment: 38 pages, 9 figures, Revised for Geochimica et Cosmochimica Acta (Sorry, they do not accept LaTeX

    Double non-equivalent chain structure on vicinal Si(557)-Au surface

    Full text link
    We study electronic and topographic properties of the vicinal Si(557)-Au surface using scanning tunneling microscopy and reflection of high energy electron diffraction technique. STM data reveal double wire structures along terraces. Moreover behavior of the voltage dependent STM tip - surface distance is different in different chains. While the one chain shows oscillations of the distance which are sensitive to the sign of the voltage bias, the oscillations in the other chain remain unchanged with respect to the positive/negative biases. This suggests that one wire has metallic character while the other one - semiconducting. The experimental results are supplemented by theoretical calculations within tight binding model suggesting that the observed chains are made of different materials, one is gold and the other one is silicon chain.Comment: 9 pages, 12 figures, accepted for publication in Phys. Rev.

    Focussing quantum states

    Get PDF
    Does the size of atoms present a lower limit to the size of electronic structures that can be fabricated in solids? This limit can be overcome by using devices that exploit quantum mechanical scattering of electron waves at atoms arranged in focussing geometries on selected surfaces. Calculations reveal that features smaller than a hydrogen atom can be obtained. These structures are potentially useful for device applications and offer a route to the fabrication of ultrafine and well defined tips for scanning tunneling microscopy.Comment: 4 pages, 4 figure

    Response of the Shockley surface state to an external electrical field: A density-functional theory study of Cu(111)

    Get PDF
    The response of the Cu(111) Shockley surface state to an external electrical field is characterized by combining a density-functional theory calculation for a slab geometry with an analysis of the Kohn-Sham wavefunctions. Our analysis is facilitated by a decoupling of the Kohn-Sham states via a rotation in Hilbert space. We find that the surface state displays isotropic dispersion, quadratic until the Fermi wave vector but with a significant quartic contribution beyond. We calculate the shift in energetic position and effective mass of the surface state for an electrical field perpendicular to the Cu(111) surface; the response is linear over a broad range of field strengths. We find that charge transfer occurs beyond the outermost copper atoms and that accumulation of electrons is responsible for a quarter of the screening of the electrical field. This allows us to provide well-converged determinations of the field-induced changes in the surface state for a moderate number of layers in the slab geometry.Comment: 11 pages, 6 figures, 4 tables; accepted for publication by Phys. Rev. B; changes from v1 in response to referee comments, esp. to Sections I and V.B (inc. Table 4), with many added references, but no change in results or conclusion

    Genome sequence of a gammaherpesvirus from a common bottlenose dolphin (Tursiops truncatus)

    Get PDF
    A herpesvirus genome was sequenced directly from a biopsy specimen of a rectal lesion from a female common bottlenose dolphin. This genome sequence comprises a unique region (161,235 bp) flanked by multiple copies of a terminal repeat (4,431 bp) and contains 72 putative genes. The virus was named common bottlenose dolphin gammaherpesvirus 1

    Learning meshes for dense visual SLAM

    Get PDF
    Estimating motion and surrounding geometry of a moving camera remains a challenging inference problem. From an information theoretic point of view, estimates should get better as more information is included, such as is done in dense SLAM, but this is strongly dependent on the validity of the underlying models. In the present paper, we use triangular meshes as both compact and dense geometry representation. To allow for simple and fast usage, we propose a view-based formulation for which we predict the in-plane vertex coordinates directly from images and then employ the remaining vertex depth components as free variables. Flexible and continuous integration of information is achieved through the use of a residual based inference technique. This so-called factor graph encodes all information as mapping from free variables to residuals, the squared sum of which is minimised during inference. We propose the use of different types of learnable residuals, which are trained end-to-end to increase their suitability as information bearing models and to enable accurate and reliable estimation. Detailed evaluation of all components is provided on both synthetic and real data which confirms the practicability of the presented approach

    Applying Alternative Teaching Methods to Impart a Rounded, Liberal Arts and Sciences (LAS) Education: Students’ Reflections on the Role of Magazines as Instructional Tools

    Get PDF
    In a constantly and rapidly changing social world, students from all disciplines ought to attain a rounded education within the tradition of a “Liberal Arts and Sciences” (LAS) context. Students outside of the natural sciences must be encouraged to appreciate the place of those sciences in their lives. Conversely, students in the natural sciences must be encouraged to envision the role of other subjects in their lives. In order to accomplish this, however, we need to go beyond basic instructional approaches by applying alternatives such as using magazines and newspapers. This paper reports students’ reflections on the use of newspapers as supplementary instructional materials to enhance learning. Data were collected from an introductory liberal arts physics course using a survey instrument. The survey had five descriptive measures: student perceptions; creativity based on activities learned; ability to link concepts learned in class to articles in the news journal; ability to impart knowledge acquired; and identifying lessons based on a case study of a selected news article from the newspaper. Student reflections indicate that magazines can effect a positive learning experience and stimulate curiosity to read. It is concluded that this approach can be used to enhance student motivation and persistence in introductory classes, particularly in schools where resources are limited. Keywords: improvisation, Liberal Arts and Science education, magazines, student reflections

    Color Dynamics in External Fields

    Full text link
    We investigate the vacuum dynamics of U(1), SU(2), and SU(3) lattice gauge theories in presence of external (chromo)magnetic fields, both in (3+1) and (2+1) dimensions. We find that the critical coupling for the phase transition in compact U(1) gauge theory is independent of the strength of an external magnetic field. On the other hand we find that, both in (3+1) and (2+1) dimensions, the deconfinement temperature for SU(2) and SU(3) gauge systems in a constant abelian chromomagnetic field decreases when the strength of the applied field increases. We conclude that the dependence of the deconfinement temperature on the strength of an external constant chromomagnetic field is a peculiar feature of non abelian gauge theories and could be useful to get insight into color confinement.Comment: 26 pages, 14 figure

    The effect of stress on paleomagnetic signals: A micromagnetic study of magnetite’s single-vortex response

    Get PDF
    In this study we use micromagnetic modeling to show that the magnetizations of magnetically single-vortex particles rotate toward the stress axis on the application of a differential compression stress. This is the exact opposite response to magnetically single-domain particles, which previously provided the theoretical underpinning of the effect of stress on the magnetic signals of rocks. We show that the magnetization directions of single-vortex and equant single-domain particles are altered by much lower stresses than previously predicted, c.f., 100 versus 1,000 MPa; where a change in magnetization is defined as a rotation of >3° after the removal of stress. The magnetization intensity of assemblages also drops by ∌20%–30% on the application and removal of stress of ∌100 MPa. Given that single-vortex particles are now thought to dominate the magnetization of most rocks, future studies should account for paleomagnetic directional uncertainties and potential underestimation of the ancient magnetic field intensity

    Entrainment and motion of coarse particles in a shallow water stream down a steep slope

    Get PDF
    We investigate the entrainment, deposition and motion of coarse spherical particles within a turbulent shallow water stream down a steep slope. This is an idealization of bed-load transport in mountain streams. Earlier investigations have described this kind of sediment transport using empirical correlations or concepts borrowed from continuum mechanics. The intermittent character of particle transport at low-water discharges led us to consider it as a random process. Sediment transport in this regime results from the imbalance between entrainment and deposition of particles rather than from momentum balance between water and particles. We develop a birth-death immigration-emigration Markov process to describe the particle exchanges between the bed and the water stream. A key feature of the model is its long autocorrelation times and wide, frequent fluctuations in the solid discharge, a phenomenon never previously explained despite its ubiquity in both nature and laboratory experiments. We present experimental data obtained using a nearly two-dimensional channel and glass beads as a substitute for sediment. Entrainment, trajectories, and deposition were monitored using a high-speed digital camera. The empirical probability distributions of the solid discharge and deposition frequency were properly described by the theoretical model. Experiments confirmed the existence of wide and frequent fluctuations of the solid discharge, and revealed the existence of long autocorrelation time, but theory overestimates the autocorrelation times by a factor of around three. Particle velocity was weakly dependent on the fluid velocity contrary to the predictions of the theoretical model, which performs well when a single particle is moving. For our experiments, the dependence of the solid discharge on the fluid velocity is entirely controlled by the number of moving particles rather than by their velocity. We also noted significant changes in the behaviour of particle transport when the bed slope or the water discharge was increased. The more vigorous the stream was, the more continuous the solid discharge became. Moreover, although 90% of the energy supplied by gravity to the stream is dissipated by turbulence for slopes lower than 10%, particles dissipate more and more energy when the bed slope is increased, but surprisingly, the dissipation rate is nearly independent of fluid velocity. A movie is available with the online version of the pape
    • 

    corecore