70,792 research outputs found

    Superfluid Phase Stability of 3^3He in Axially Anisotropic Aerogel

    Full text link
    Measurements of superfluid 3^3He in 98% aerogel demonstrate the existence of a metastable \emph{A}-like phase and a stable \emph{B}-like phase. It has been suggested that the relative stability of these two phases is controlled by anisotropic quasiparticle scattering in the aerogel. Anisotropic scattering produced by axial compression of the aerogel has been predicted to stabilize the axial state of superfluid 3^3He. To explore this possiblity, we used transverse acoustic impedance to map out the phase diagram of superfluid 3^3He in a ∼98\sim 98% porous silica aerogel subjected to 17% axial compression. We have previously shown that axial anisotropy in aerogel leads to optical birefringence and that optical cross-polarization studies can be used to characterize such anisotropy. Consequently, we have performed optical cross-polarization experiments to verify the presence and uniformity of the axial anisotropy in our aerogel sample. We find that uniform axial anisotropy introduced by 17% compression does not stabilize the \emph{A}-like phase. We also find an increase in the supercooling of the \emph{A}-like phase at lower pressure, indicating a modification to \emph{B}-like phase nucleation in \emph{globally} anisotropic aerogels.Comment: 4 pages, 4 figures, submitted to LT25 (25th International Conference on Low Temperature Physics

    Coherent coupling between surface plasmons and excitons in semiconductor nanocrystals

    Full text link
    We present an experimental demonstration of strong coupling between a surface plasmon propagating on a planar silver substrate, and the lowest excited state of CdSe nanocrystals. Variable-angle spectroscopic ellipsometry measurements demonstrated the formation of plasmon-exciton mixed states, characterized by a Rabi splitting of ∼\sim 82 meV at room temperature. Such a coherent interaction has the potential for the development of plasmonic non-linear devices, and furthermore, this system is akin to those studied in cavity quantum electrodynamics, thus offering the possibility to study the regime of strong light-matter coupling in semiconductor nanocrystals at easily accessible experimental conditions.Comment: 12 pages, 4 figure

    Type Ia supernova diversity: Standardizing the candles

    Get PDF
    Future use of type Ia supernovae for cosmology aims not only to determine the equation of state of dark energy, but also to constrain possible variations in its value. To achieve this goal, supernovae need to become better calibrated standard candles - not only to improve the precision of the measurement, but more importantly to gain better control over systematic uncertainties in order to ensure the accuracy of the result. Here we report on a project to quantify the diversity in type Ia supernovae, and to look for trends and/or sub-types that can be used to improve their calibration as standard candles. We implement a version of principal component analysis on type Ia supernova spectra. Although the quantity of data is not sufficient to draw any firm conclusions we show that this method holds promise for, at the very least, effectively separating peculiar supernovae. Whether it can be further used to improve the calibration of normal type Ia's remains a project for future study.Comment: Conference Proceedings. Cefalu 2006, The multicoloured landscape of compact objects and their explosive origins. Six pages, three figure

    Small Structures via Thermal Instability of Partially Ionized Plasma. I. Condensation Mode

    Full text link
    (Shortened) Thermal instability of partially ionized plasma is investigated by linear perturbation analysis. According to the previous studies under the one fluid approach, the thermal instability is suppressed due to the magnetic pressure. However, the previous studies did not precisely consider the effect of the ion-neutral friction, since they did not treat the flow as two fluid which is composed of ions and neutrals. Then, we revisit the effect of the ion-neutral friction of the two fluid to the growth of the thermal instability. According to our study, (1) The instability which is characterized by the mean molecular weight of neutrals is suppressed via the ion-neutral friction only when the magnetic field and the friction are sufficiently strong. The suppression owing to the friction occurs even along the field line. If the magnetic field and the friction are not so strong, the instability is not stabilized. (2) The effect of the friction and the magnetic field is mainly reduction of the growth rate of the thermal instability of weakly ionized plasma. (3) The effect of friction does not affect the critical wavelength lambdaF for the thermal instability. This yields that lambdaF of the weakly ionized plasma is not enlarged even when the magnetic field exists. We insist that the thermal instability of the weakly ionized plasma in the magnetic field can grow up even at the small length scale where the instability under the assumption of the one fluid plasma can not grow owing to the stabilization by the magnetic field. (4) The wavelength of the maximum growth rate of the instability shifts shortward according to the decrement of the growth rate, because the friction is effective at rather larger scale. Therefore, smaller structures are expected to appear than those without the ion-neutral friction.Comment: To appear in Ap

    Universal Behavior in Large-scale Aggregation of Independent Noisy Observations

    Full text link
    Aggregation of noisy observations involves a difficult tradeoff between observation quality, which can be increased by increasing the number of observations, and aggregation quality which decreases if the number of observations is too large. We clarify this behavior for a protypical system in which arbitrarily large numbers of observations exceeding the system capacity can be aggregated using lossy data compression. We show the existence of a scaling relation between the collective error and the system capacity, and show that large scale lossy aggregation can outperform lossless aggregation above a critical level of observation noise. Further, we show that universal results for scaling and critical value of noise which are independent of system capacity can be obtained by considering asymptotic behavior when the system capacity increases toward infinity.Comment: 10 pages, 3 figure

    Observations of Small Scale ISM Structure in Dense Atomic Gas

    Full text link
    We present high resolution (R~170,000) Kitt Peak National Observatory Co'ude Feed telescope observations of the interstellar KI 7698 angstrom line towards 5 multiple star systems with saturated NaI components. We compare the KI absorption line profiles in each of the two (or three) lines of sight in these systems, and find significant differences between the sight-lines in 3 out of the 5 cases. We infer that the small scale structure traced by previous NaI observations is also present in at least some of the components with saturated NaI absorption lines, and thus the small scale structures traced by the neutral species are occurring at some level in clouds of all column densities. We discuss the implications of that conclusion and a potential explanation by density inhomogeneities
    • …
    corecore