53,127 research outputs found

    Procedure for rapid determination of nickel, cobalt, and chromium in airborne particulate samples

    Get PDF
    A rapid, selective procedure for the determination of 1 to 20 micrograms of nickel, chromium, and cobalt in airborne particulates is described. The method utilizes the combined techniques of low temperature ashing and atomic absorption spectroscopy. The airborne particulates are collected on analytical filter paper. The filter papers are ashed, and the residues are dissolved in hydrochloric acid. Nickel, chromium, and cobalt are determined directly with good precision and accuracy by means of atomic absorption. The effects of flame type, burner height, slit width, and lamp current on the atomic absorption measurements are reported

    Rapid method for determining nitrogen in tantalum and niobium alloys

    Get PDF
    Adaptation of commercial instrument which measures nitrogen and oxygen in steel gave results in less than four minutes. Sample is heated in helium atmosphere in single-use graphite crucible. Platinum flux facilitates melting of sample. Released gases are separated chromatographically and measured in thermal-conductivity cell

    Electrostatic forming and testing of polymer films on a 16-foot diameter test fixture

    Get PDF
    The large space systems technology program investigated different forms of large, lightweight, deployable structures which could be carried on the Space Shuttle. Different forms and concepts of antennas as a type of large space system were investigated. The electrostatically controlled membrane reflector made of metallized material concept was chosen. The concept is a good candidate for creating an antenna with high surface quality and has the ability to be packaged and deployed from the Shuttle with a significant reduction in weight compared to other antenna types

    IECM calibration and data reduction requirements

    Get PDF
    The induced environment contamination monitor (IECM) tape recorder format, as it relates to the ouput of meaningful data from the IECM instrument, is explained. Eight-bit words (or bytes) generate numbers that represent voltage levels of electronic detection probes for each experiment. This information is amalgamated by the IECM Data Acquisition and Control System (DACS). In some cases bits represent certain status situations concerning an experiment, such as whether a valve is opened or closed. Voltages are transformed into meaningful physical phenomena through equations of calibration. Data formats and plots are generated as requested for each IECM experimenter

    Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 4: Sections 15 through 21

    Get PDF
    The analyses performed to provide structural mass estimates for the arrow wing supersonic cruise aircraft are presented. To realize the full potential for structural mass reduction, a spectrum of approaches for the wing and fuselage primary structure design were investigated. The objective was: (1) to assess the relative merits of various structural arrangements, concepts, and materials; (2) to select the structural approach best suited for the Mach 2.7 environment; and (3) to provide construction details and structural mass estimates based on in-depth structural design studies. Production costs, propulsion-airframe integration, and advanced technology assessment are included

    Advanced study of video signal processing in low signal to noise environments Semiannual progress report, 1967-1968

    Get PDF
    Mathematical model for Apollo video signal processing in low signal to noise ratio environment

    Evaluation of structural design concepts for an arrow-wing supersonic cruise aircraft

    Get PDF
    An analytical study was performed to determine the best structural approach for design of primary wing and fuselage structure of a Mach 2.7 arrow wing supersonic cruise aircraft. Concepts were evaluated considering near term start of design. Emphasis was placed on the complex interactions between thermal stress, static aeroelasticity, flutter, fatigue and fail safe design, static and dynamic loads, and the effects of variations in structural arrangements, concepts and materials on these interactions. Results indicate that a hybrid wing structure incorporating low profile convex beaded and honeycomb sandwich surface panels of titanium alloy 6Al-4V were the most efficient. The substructure includes titanium alloy spar caps reinforced with boron polyimide composites. The fuselage shell consists of hat stiffened skin and frame construction of titanium alloy 6Al-4V. A summary of the study effort is presented, and a discussion of the overall logic, design philosophy and interaction between the analytical methods for supersonic cruise aircraft design are included

    Advanced structures technology applied to a supersonic cruise arrow-wing configuration

    Get PDF
    The application of advanced technology to a promising aerodynamic configuration was explored to investigate the improved payload range characteristics over the configuration postulated during the National SST Program. The results of an analytical study performed to determine the best structural approach for design of a Mach number 2.7 arrow-wing supersonic cruise aircraft are highlighted. The data conducted under the auspices of the Structures Directorate of the National Aeronautics and Space Administration, Langley Research Center, established firm technical bases from which further trend studies were conducted to quantitatively assess the benefits and feasibility of using advanced structures technology to arrive at a viable advanced supersonic cruise aircraft

    Design considerations for composite fuselage structure of commercial transport aircraft

    Get PDF
    The structural, manufacturing, and service and environmental considerations that could impact the design of composite fuselage structure for commercial transport aircraft application were explored. The severity of these considerations was assessed and the principal design drivers delineated. Technical issues and potential problem areas which must be resolved before sufficient confidence is established to commit to composite materials were defined. The key issues considered are: definition of composite fuselage design specifications, damage tolerance, and crashworthiness
    corecore