1,506 research outputs found

    Using ground-based GPS to characterize atmospheric turbulence

    Get PDF
    A new method for measuring and studying atmospheric turbulence is presented. The method uses data from a local network of GPS receivers. The GPS data are processed in a way that assures that the estimated zenith total delays (ZTD) contain the effects of atmospheric turbulence present in the GPS observations. The turbulence is characterized using the spatial structure function for the atmospheric zenith total delay. The structure function is modeled by an expression with unknown parameters which contains information about the turbulence. The unknown parameters are solved by a fit to the observed ZTD variations. We apply the method to GPS data from the Yucca Mountain network, Nevada, USA. The results show that the magnitude of the turbulent variations in that region have a strong seasonal dependence, with much larger variations in summer compared to winter

    Spectral Orbits and Peak-to-Average Power Ratio of Boolean Functions with respect to the {I,H,N}^n Transform

    Full text link
    We enumerate the inequivalent self-dual additive codes over GF(4) of blocklength n, thereby extending the sequence A090899 in The On-Line Encyclopedia of Integer Sequences from n = 9 to n = 12. These codes have a well-known interpretation as quantum codes. They can also be represented by graphs, where a simple graph operation generates the orbits of equivalent codes. We highlight the regularity and structure of some graphs that correspond to codes with high distance. The codes can also be interpreted as quadratic Boolean functions, where inequivalence takes on a spectral meaning. In this context we define PAR_IHN, peak-to-average power ratio with respect to the {I,H,N}^n transform set. We prove that PAR_IHN of a Boolean function is equivalent to the the size of the maximum independent set over the associated orbit of graphs. Finally we propose a construction technique to generate Boolean functions with low PAR_IHN and algebraic degree higher than 2.Comment: Presented at Sequences and Their Applications, SETA'04, Seoul, South Korea, October 2004. 17 pages, 10 figure

    Return to work and workplace activity limitations following total hip or knee replacement

    Get PDF
    SummaryObjectiveTotal hip (THR) and knee (TKR) replacements increasingly are performed on younger people making return to work a salient outcome. This research evaluates characteristics of individuals with early and later return to work following THR and TKR. Additionally, at work limitations pre-surgery and upon returning to work, and factors associated with work limitations were evaluated.Methods190 THR and 170 TKR of a total 931 cohort participants were eligible (i.e., working or on short-term disability pre-surgery). They completed questionnaires pre-surgery and 1, 3, 6 and 12 months post-surgery that included demographics, type of occupation, and the Workplace Activity Limitations Scale (WALS).Results166 (87%) and 144 (85%) returned to work by 12 months following THR and TKR, respectively. Early (1 month) return to work was associated with, male gender, university education, working in business, finance or administration, and low physical demand work. People with THR returned to work earlier than those with TKR. For both groups, less pain and every day functional limitations were associated with less workplace activity limitations at the time return to work.ConclusionsThe majority of individuals working prior to surgery return to work following hip or knee replacement for osteoarthritis (OA) and experience fewer limitations at work than pre-surgery. The changing workforce dynamics and trends toward surgery at younger ages mean that these are important outcomes for clinicians to assess. Additionally, this is important information for employers in understanding continued participation in employment for people with OA

    Direct Fitness Correlates and Thermal Consequences of Facultative Aggregation in a Desert Lizard

    Get PDF
    Social aggregation is a common behavioral phenomenon thought to evolve through adaptive benefits to group living. Comparing fitness differences between aggregated and solitary individuals in nature – necessary to infer an evolutionary benefit to living in groups – has proven difficult because communally-living species tend to be obligately social and behaviorally complex. However, these differences and the mechanisms driving them are critical to understanding how solitary individuals transition to group living, as well as how and why nascent social systems change over time. Here we demonstrate that facultative aggregation in a reptile (the Desert Night Lizard, Xantusia vigilis) confers direct reproductive success and survival advantages and that thermal benefits of winter huddling disproportionately benefit small juveniles, which can favor delayed dispersal of offspring and the formation of kin groups. Using climate projection models, however, we estimate that future aggregation in night lizards could decline more than 50% due to warmer temperatures. Our results support the theory that transitions to group living arise from direct benefits to social individuals and offer a clear mechanism for the origin of kin groups through juvenile philopatry. The temperature dependence of aggregation in this and other taxa suggests that environmental variation may be a powerful but underappreciated force in the rapid transition between social and solitary behavior

    Evolution of a Bose-condensed gas under variations of the confining potential

    Get PDF
    We discuss the dynamic properties of a trapped Bose-condensed gas under variations of the confining field and find analytical scaling solutions for the evolving coherent state (condensate). We further discuss the characteristic features and the depletion of this coherent state.Comment: 4 pages, no postscript figure

    Energies and collapse times of symmetric and symmetry-breaking states of finite systems with a U(1) symmetry

    Full text link
    We study quantum systems of volume V, which will exhibit the breaking of a U(1) symmetry in the limit of V \to \infty, when V is large but finite. We estimate the energy difference between the `symmetric ground state' (SGS), which is the lowest-energy state that does not breaks the symmetry, and a `pure phase vacuum' (PPV), which approaches a symmetry-breaking vacuum as V \to \infty. Under some natural postulates on the energy of the SGS, it is shown that PPVs always have a higher energy than the SGS, and we derive a lower bound of the excess energy. We argue that the lower bound is O(V^0), which becomes much larger than the excitation energies of low-lying excited states for a large V. We also discuss the collapse time of PPVs for interacting many bosons. It is shown that the wave function collapses in a microscopic time scale, because PPVs are not energy eigenstates. We show, however, that for PPVs the expectation value of any observable, which is a finite polynomial of boson operators and their derivatives, does not collapse for a macroscopic time scale. In this sense, the collapse time of PPVs is macroscopically long.Comment: In the revised manuscript, Eq. (22), Ref. [8], and Notes [13], [15] and [17] have been adde

    Targeting lentiviral vectors to antigen-specific immunoglobulins

    Get PDF
    Gene transfer into B cells by lentivectors can provide an alternative approach to managing B lymphocyte malignancies and autoreactive B cell-mediated autoimmune diseases. These pathogenic B cell Populations can be distinguished by their surface expression of monospecific immunoglobulin. Development of a novel vector system to deliver genes to these specific B cells could improve the safety and efficacy of gene therapy. We have developed an efficient rnethod to target lentivectors to monospecific immunoglobulin-expressing cells in vitro and hi vivo. We were able to incorporate a model antigen CD20 and a fusogenic protein derived from the Sindbis virus as two distinct molecules into the lentiviral Surface. This engineered vector could specifically bind to cells expressing Surface immunoglobulin recognizing CD20 (αCD20), resulting in efficient transduction of target cells in a cognate antigen-dependent manner in vitro, and in vivo in a xenografted tumor model. Tumor suppression was observed in vivo, using the engineered lentivector to deliver a suicide gene to a xenografted tumor expressing αCD20. These results show the feasibility of engineering lentivectors to target immunoglobulin-specific cells to deliver a therapeutic effect. Such targeting lentivectors also Could potentially be used to genetically mark antigen-specific B cells in vivo to study their B cell biology
    • …
    corecore