64 research outputs found

    Chiral Vortons and Cosmological Constraints on Particle Physics

    Full text link
    We investigate the cosmological consequences of particle physics theories that admit stable loops of current-carrying string - vortons. In particular, we consider chiral theories where a single fermion zero mode is excited in the string core, such as those arising in supersymmetric theories with a D-term. The resulting vortons formed in such theories are expected to be more stable than their non-chiral cousins. General symmetry breaking schemes are considered in which strings formed at one symmetry breaking scale become current-carrying at a subsequent phase transition. The vorton abundance is estimated and constraints placed on the underlying particle physics theories from cosmological observations. Our constraints on the chiral theory are considerably more stringent than the previous estimates for more general theories.Comment: minor corrections made. This version will appear in PR

    Collisions of strings with Y junctions

    Full text link
    We study the dynamics of Nambu--Goto strings with junctions at which three strings meet. In particular, we exhibit one simple exact solution and examine the process of intercommuting of two straight strings, in which they exchange partners but become joined by a third string. We show that there are important kinematical constraints on this process. The exchange cannot occur if the strings meet with very large relative velocity. This may have important implications for the evolution of cosmic superstring networks and non-abelian string networks.Comment: 4 pages, 1 figure, uses revtex 4. Clarifying comments added to correct a conceptual error, reference updated. Version accepted by Phys Rev Letters, with additional references and minor change

    Baryogenesis through gradual collapse of vortons

    Get PDF
    We evaluate the matter-antimatter asymmetry produced by emission of fermionic carriers from vortons which are assumed to be destabilized at the electroweak phase transition.The velocity of contraction of the vorton, calculated through the decrease of its magnetic energy, originates a chemical potential which allows a baryogenesis of the order of the observed value. This asymmetry is not diluted by reheating if the collapse of vortons is distributed along an interval of ~ 10^-9 sec.Comment: 14 pages, Latex, no figure

    Dynamical Stability of Witten Rings

    Get PDF
    The dynamical stability of cosmic rings, or vortons, is investigated for the particular equation of state given by the Witten bosonic model. It is found that there exists a finite range of the state parameter for which the vorton states are actually stable against dynamical perturbations. Inclusion of the electromagnetic self action into the equation of state slightly shrinks the stability region but otherwise yields no qualitative difference. If the Witten bosonic model represents a good approximation for more realistic string models, then the cosmological vorton excess problem can only be solved by assuming either that strings are formed at low energy scales or that some quantum instability may develop at a sufficient rate.Comment: 11 pages, LaTeX-ReVTeX (v.3), 2 figures available upon request, DAMTP R-94/1

    Cosmological Consequences of Slow-Moving Bubbles in First-Order Phase Transitions

    Get PDF
    In cosmological first-order phase transitions, the progress of true-vacuum bubbles is expected to be significantly retarded by the interaction between the bubble wall and the hot plasma. We examine the evolution and collision of slow-moving true-vacuum bubbles. Our lattice simulations indicate that phase oscillations, predicted and observed in systems with a local symmetry and with a global symmetry where the bubbles move at speeds less than the speed of light, do not occur inside collisions of slow-moving local-symmetry bubbles. We observe almost instantaneous phase equilibration which would lead to a decrease in the expected initial defect density, or possibly prevent defects from forming at all. We illustrate our findings with an example of defect formation suppressed in slow-moving bubbles. Slow-moving bubble walls also prevent the formation of `extra defects', and in the presence of plasma conductivity may lead to an increase in the magnitude of any primordial magnetic field formed.Comment: 10 pages, 7 figures, replaced with typos corrected and reference added. To appear in Phys. Rev.

    Evolution of Fields in a Second Order Phase Transition

    Get PDF
    We analyse the evolution of scalar and gauge fields during a second order phase transition using a Langevin equation approach. We show that topological defects formed during the phase transition are stable to thermal fluctuations. Our method allows the field evolution to be followed throughout the phase transition, for both expanding and non-expanding Universes. The results verify the Kibble mechanism for defect formation during phase transitions.Comment: 12 pages of text plus 17 diagrams available on request, DAMTP 94-8

    Scaling Property of the global string in the radiation dominated universe

    Get PDF
    We investigate the evolution of the global string network in the radiation dominated universe by use of numerical simulations in 3+1 dimensions. We find that the global string network settles down to the scaling regime where the energy density of global strings, ρs\rho_{s}, is given by ρs=ΟΌ/t2\rho_{s} = \xi \mu / t^2 with ÎŒ\mu the string tension per unit length and the scaling parameter, Ο∌(0.9−1.3)\xi \sim (0.9-1.3), irrespective of the cosmic time. We also find that the loop distribution function can be fitted with that predicted by the so-called one scale model. Concretely, the number density, nl(t)n_{l}(t), of the loop with the length, ll, is given by nl(t)=Îœ/[t3/2(l+Îșt)5/2]n_{l}(t) = \nu/[t^{3/2} (l + \kappa t)^{5/2}] where Μ∌0.0865\nu \sim 0.0865 and Îș\kappa is related with the Nambu-Goldstone(NG) boson radiation power from global strings, PP, as P=ÎșÎŒP = \kappa \mu with Îș∌0.535\kappa \sim 0.535. Therefore, the loop production function also scales and the typical scale of produced loops is nearly the horizon distance. Thus, the evolution of the global string network in the radiation dominated universe can be well described by the one scale model in contrast with that of the local string network.Comment: 18 pages, 9 figures, to appear in Phys. Rev.

    Evolution of a global string network in a matter dominated universe

    Get PDF
    We evolve the network of global strings in the matter-dominated universe by means of numerical simulations. The existence of the scaling solution is confirmed as in the radiation-dominated universe but the scaling parameter Ο\xi takes a slightly smaller value, Ο≃0.6±0.1\xi \simeq 0.6 \pm 0.1, which is defined as Ο=ρst2/ÎŒ\xi = \rho_{s} t^{2} / \mu with ρs\rho_{s} the energy density of global strings and ÎŒ\mu the string tension per unit length. The change of Ο\xi from the radiation to the matter-dominated universe is consistent with that obtained by Albrecht and Turok by use of the one-scale model. We also study the loop distribution function and find that it can be well fitted with that predicted by the one-scale model, where the number density nl(t)n_{l}(t) of the loop with the length ll is given by nl(t)=Îœ/[t2(l+Îșt)2]n_{l}(t) = \nu/[t^2 (l + \kappa t)^2] with Μ∌0.040\nu \sim 0.040 and Îș∌0.48\kappa \sim 0.48. Thus, the evolution of the global string network in the matter-dominated universe can be well described by the one-scale model as in the radiation-dominated universe.Comment: 10 pages, 5 figure

    Winding up by a quench: vortices in the wake of rapid Bose-Einstein condensation

    Full text link
    A second order phase transition induced by a rapid quench can lock out topological defects with densities far exceeding their equilibrium expectation values. We use quantum kinetic theory to show that this mechanism, originally postulated in the cosmological context, and analysed so far only on the mean field classical level, should allow spontaneous generation of vortex lines in trapped Bose-Einstein condensates of simple topology, or of winding number in toroidal condensates.Comment: 4 pages, 2 figures; misprint correcte
    • 

    corecore