650 research outputs found

    Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control

    Get PDF
    Misfolded proteins retained in the endoplasmic reticulum (ER) are degraded by the ER-associated degradation pathway. The mechanisms used to sort them from correctly folded proteins remain unclear. Analysis of substrates with defined folded and misfolded domains has revealed a system of sequential checkpoints that recognize topologically distinct domains of polypeptides. The first checkpoint examines the cytoplasmic domains of membrane proteins. If a lesion is detected, it is retained statically in the ER and rapidly degraded without regard to the state of its other domains. Proteins passing this test face a second checkpoint that monitors domains localized in the ER lumen. Proteins detected by this pathway are sorted from folded proteins and degraded by a quality control mechanism that requires ER-to-Golgi transport. Although the first checkpoint is obligatorily directed at membrane proteins, the second monitors both soluble and membrane proteins. Our data support a model whereby “properly folded” proteins are defined biologically as survivors that endure a series of distinct checkpoints

    Dust Grain Orbital Behavior Around Ceres

    Full text link
    Many asteroids show indications they have undergone impacts with meteoroid particles having radii between 0.01 m and 1 m. During such impacts, small dust grains will be ejected at the impact site. The possibility of these dust grains (with radii greater than 2.2x10-6 m) forming a halo around a spherical asteroid (such as Ceres) is investigated using standard numerical integration techniques. The orbital elements, positions, and velocities are determined for particles with varying radii taking into account both the influence of gravity, radiation pressure, and the interplanetary magnetic field (for charged particles). Under the influence of these forces it is found that dust grains (under the appropriate conditions) can be injected into orbits with lifetimes in excess of one year. The lifetime of the orbits is shown to be highly dependent on the location of the ejection point as well as the angle between the surface normal and the ejection path. It is also shown that only particles ejected within 10 degrees relative to the surface tangential survive more than a few hours and that the longest-lived particles originate along a line perpendicular to the Ceres-Sun line.Comment: 8 pages, Presented at COSPAR '0

    Distinct Retrieval and Retention Mechanisms are Required for the Quality Control of Endoplasmic Reticulum Protein Folding

    Get PDF
    Proteins destined for the secretory pathway must first fold and assemble in the lumen of endoplasmic reticulum (ER). The pathway maintains a quality control mechanism to assure that aberrantly processed proteins are not delivered to their sites of function. As part of this mechanism, misfolded proteins are returned to the cytosol via the ER protein translocation pore where they are ubiquitinated and degraded by the 26S proteasome. Previously, little was known regarding the recognition and targeting of proteins before degradation. By tracking the fate of several mutant proteins subject to quality control, we demonstrate the existence of two distinct sorting mechanisms. In the ER, substrates are either sorted for retention in the ER or are transported to the Golgi apparatus via COPII-coated vesicles. Proteins transported to the Golgi are retrieved to the ER via the retrograde transport system. Ultimately, both retained and retrieved proteins converge at a common machinery at the ER for degradation. Furthermore, we report the identification of a gene playing a novel role specific to the retrieval pathway. The gene, BST1, is required for the transport of misfolded proteins to the Golgi, although dispensable for the transport of many normal cargo proteins

    Optical control of photon tunneling through an array of nanometer scale cylindrical channels

    Full text link
    We report first observation of photon tunneling gated by light at a different wavelength in an artificially created array of nanometer scale cylindrical channels in a thick gold film. Polarization properties of gated light provide strong proof of the enhanced nonlinear optical mixing in nanometric channels involved in the process. This suggests the possibility of building a new class of "gated" photon tunneling devices for massive parallel all-optical signal and image processing.Comment: 4 pages, 4 figure

    Vortex Rings in two Component Bose-Einstein Condensates

    Full text link
    We study the structure of the vortex core in two-component Bose-Einstein condensates. We demonstrate that the order parameter may not vanish and the symmetry may not be restored in the core of the vortex. In this case such vortices can form vortex rings known as vortons in particle physics literature. In contrast with well-studied superfluid 4He^4He, where similar vortex rings can be stable due to Magnus force only if they move, the vortex rings in two-component BECs can be stable even if they are at rest. This beautiful effect was first discussed by Witten in the cosmic string context, where it was shown that the stabilization occurs due to condensation of the second component of the field in the vortex core. This second condensate trapped in the core may carry a current along the vortex ring counteracting the effect of string tension that causes the loop to shrink. We speculate that such vortons may have been already observed in the laboratory. We also speculate that the experimental study of topological structures in BECs can provide a unique opportunity to study cosmology and astrophysics by doing laboratory experiments.Comment: 21 pages, 2 figure

    Statistical properties of the Burgers equation with Brownian initial velocity

    Full text link
    We study the one-dimensional Burgers equation in the inviscid limit for Brownian initial velocity (i.e. the initial velocity is a two-sided Brownian motion that starts from the origin x=0). We obtain the one-point distribution of the velocity field in closed analytical form. In the limit where we are far from the origin, we also obtain the two-point and higher-order distributions. We show how they factorize and recover the statistical invariance through translations for the distributions of velocity increments and Lagrangian increments. We also derive the velocity structure functions and we recover the bifractality of the inverse Lagrangian map. Then, for the case where the initial density is uniform, we obtain the distribution of the density field and its nn-point correlations. In the same limit, we derive the nn-point distributions of the Lagrangian displacement field and the properties of shocks. We note that both the stable-clustering ansatz and the Press-Schechter mass function, that are widely used in the cosmological context, happen to be exact for this one-dimensional version of the adhesion model.Comment: 42 pages, published in J. Stat. Phy

    Scattering off an SO(10) cosmic string

    Full text link
    The scattering of fermions from the abelian string arising during the phase transition SO(10)SU(5)×Z2SO(10) \rightarrow SU(5) \times Z_2 induced by the Higgs in the 126 representation is studied. Elastic cross-sections and baryon number violating cross-sections due to the coupling to gauge fields in the core of the string are computed by both a first quantised method and a perturbative second quantised method. The elastic cross-sections are found to be Aharonov-Bohm type. However, there is a marked asymmetry between the scattering cross-sections for left and right handed fields. The catalysis cross-sections are small, depending on the grand unified scale. If cosmic strings were observed our results could help tie down the underlying gauge group.Comment: 20 page

    Gravitational field around a screwed superconducting cosmic string in scalar-tensor theories

    Get PDF
    We obtain the solution that corresponds to a screwed superconducting cosmic string (SSCS) in the framework of a general scalar-tensor theory including torsion. We investigate the metric of the SSCS in Brans-Dicke theory with torsion and analyze the case without torsion. We show that in the case with torsion the space-time background presents other properties different from that in which torsion is absent. When the spin vanish, this torsion is a ϕ\phi-gradient and then it propagates outside of the string. We investigate the effect of torsion on the gravitational force and on the geodesics of a test-particle moving around the SSCS. The accretion of matter by wakes formation when a SSCS moves with speed vv is investigated. We compare our results with those obtained for cosmic strings in the framework of scalar-tensor theory.Comment: 22 pages, LaTeX, presented at the "XXII - Encontro Nacional de Fisica de Particulas e Campos", Sao Lourenco, MG, Brazi

    Dynamics of evaporative cooling in magnetically trapped atomic hydrogen

    Full text link
    We study the evaporative cooling of magnetically trapped atomic hydrogen on the basis of the kinetic theory of a Bose gas. The dynamics of trapped atoms is described by the coupled differential equations, considering both the evaporation and dipolar spin relaxation processes. The numerical time-evolution calculations quantitatively agree with the recent experiment of Bose-Einstein condensation with atomic hydrogen. It is demonstrated that the balance between evaporative cooling and heating due to dipolar relaxation limits the number of condensates to 9x10^8 and the corresponding condensate fraction to a small value of 4% as observed experimentally.Comment: 5 pages, REVTeX, 3 eps figures, Phys. Rev. A in pres
    corecore