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GENERALISED APÉRY NUMBERS MODULO 9

C. KRATTENTHALER† AND T. W. MÜLLER∗

Abstract. We characterise the behaviour of (generalised) Apéry numbers modulo 9,
thereby in particular establishing two conjectures in “A method for determining the
mod-3k behaviour of recursive sequences” [arχiv:1308.2856].

1. Introduction

For non-negative integers r, s and n, the (generalised) Apéry numbers an(r, s) are
defined by

an(r, s) =
n∑
k=0

(
n

k

)r(
n+ k

k

)s
. (1.1)

The (classical) Apéry numbers an(2, 1) and an(2, 2) appear in Apéry’s proof [2] of the
irrationality of ζ(2) and ζ(3) (cf. also [7]) as the leading coefficients in certain linear
forms in ζ(2) and 1, and in ζ(3) and 1, respectively. Similarly, the Apéry numbers
an(r, 1) appear as leading coefficients in linear forms in ζ(r), ζ(r − 2), . . . , 1 in [3],
where it is shown that infinitely many values among ζ(3), ζ(5), ζ(7), . . . are irrational.
In the past, the general Apéry numbers an(r, s) have been the object of numerous
arithmetic investigations, see, for instance, [1, 4, 6, 8, 14] for a highly non-exhaustive
selection.

We point out that the Apéry numbers with second parameter s = 0 have received
special attention in the literature. It is simple to see that an(1, 0) = 2n and an(2, 0) =(
2n
n

)
. The numbers an(3, 0) are also known under the name of “Franel numbers,” and the

more general numbers an(r, 0) for r ≥ 4 as “extended” or “generalised Franel numbers.”
Given a prime number p and the p-adic expansion of n, n = n0 + n1p+ n2p

2 + · · ·+
nmp

m, it follows from more general theorems of McIntosh [13, Theorems 3 and 6] that
the factorisation

an(r, s) ≡
m∏
i=0

ani(r, s) (mod p) (1.2)

holds. Deutsch and Sagan [6, Theorem 5.9] rediscover this factorisation, and they use it
to characterise the congruence classes of an(r, s) modulo 3 in terms of precise conditions
which the 3-adic expansion of n must satisfy. Gessel [8] obtains the above factorisation
in the special case where r = s = 2, and furthermore, in Theorem 3(iii) of that paper,
proves that the factorisation (1.2) remains valid for r = s = 2 with 9 in place of the
modulus p.
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Key words and phrases. Apéry numbers, congruences.
†Research partially supported by the Austrian Science Foundation FWF, grants Z130-N13 and

F50-N15, the latter in the framework of the Special Research Program “Algorithmic and Enumerative
Combinatorics”
∗Research supported by Lise Meitner Grant M1661-N25 of the Austrian Science Foundation FWF.

1



2 C. KRATTENTHALER AND T. W. MÜLLER

The goal of our paper is to determine the behaviour of the Apéry numbers an(r, s)
modulo 9 for arbitrary positive integers r and non-negative integers s. This will be
achieved by first deriving a Lucas-type result for binomial coefficients modulo 9 (see
Lemma 1 in the next section), and using this to establish an analogue of formula (1.2)
for the modulus 9; see Theorems 2 and 3 in Section 3. From these theorems, one
easily derives explicit congruences for an(r, s) depending on the congruence classes of
r and s modulo 6; see Section 4 for a sample of such results. In the long version [11]
of this paper, all possible cases are worked out (there are 32 of them). In particular,
Corollaries 8 and 9 confirm Conjectures 65 and 66 from [10] concerning the explicit
description of the classical Apéry numbers an(2, 1) and an(2, 2) modulo 9. As a side
result, we obtain generalisations of Gessel’s factorisation result for an(2, 2) modulo 9
mentioned above; see the remark after (4.6).

We point out that Rowland and Yassawi [15] have also provided proofs for Con-
jectures 65 and 66 from [10] (among many other things), using however a completely
different approach, based on extracting diagonals from rational power series and con-
struction of automata. It is conceivable that their approach would also achieve proofs
of the other results in this paper.

It should be clear that our approach could also be used to obtain explicit descriptions
of the congruence classes of Apéry numbers modulo higher powers of 3, and the same
remark applies to the approach in [15]. The analysis and the results would be more
complex than the ones in this paper, though.

2. A Lucas-type theorem modulo 9

The classical result of Lucas in [12, p. 230, Eq. (137)] says that, if p is a prime,
n = n0+n1p+n2p

2+· · ·+nmpm, and k = k0+k1p+k2p
2+· · ·+kmpm, 0 ≤ ni, ki ≤ p−1,

then

(
n

k

)
≡

m∏
i=0

(
ni
ki

)
(mod p).

Using the generating function approach proposed in [9, Sec. 6], we find an analogue of
this formula for the modulus 9, which is different from the mod-9 cases of the general-
isations of Lucas’ formula to prime powers given in [5] and [9].
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Lemma 1. For all non-negative integers n = n0 + 3n1 + 9n2 + · · · + 3mnm and k =
k0 + 3k1 + 9k2 + · · ·+ 3mnm, where 0 ≤ ni, ki ≤ 2 for all i, we have(
n

k

)
≡
(
n0

k0

)(
n1

k1

)
· · ·
(
nm
km

)
+

m∑
ν=1

3nνχ(nν−1 = 0)

(
n0

k0

)
· · ·
(
nν−2
kν−2

)(
1

kν−1 − 1

)(
nν − 1

kν

)(
nν+1

kν+1

)
· · ·
(
nm
km

)

+
m∑
ν=1

3nνχ(nν−1 = 1, kν−1 = 0)

(
n0

k0

)
· · ·
(
nν−2
kν−2

)(
nν
kν

)
· · ·
(
nm
km

)

−
m∑
ν=1

3nνχ(nν−1 = 1)

(
n0

k0

)
· · ·
(
nν−2
kν−2

)(
2

kν−1

)(
nν − 1

kν

)(
nν+1

kν+1

)
· · ·
(
nm
km

)

+
m∑
ν=1

3nνχ(nν−1 = 2, kν−1 = 1)

(
n0

k0

)
· · ·
(
nν−2
kν−2

)(
nν
kν

)
· · ·
(
nm
km

)
(mod 9),

(2.1)

where χ(S) = 1 if S is true and χ(S) = 0 otherwise.

Proof. During this proof, given polynomials f(z) and g(z) with integer coefficients, we
write

f(z) = g(z) modulo 9

to mean that the coefficients of zi in f(z) and g(z) agree modulo 9 for all i. We use an
analogous notation for the modulus 3.

An easy induction shows that

(1 + z)3
ν

= 1 + z3
ν

+ 3z3
ν−1
(

1 + z3
ν−1
)

modulo 9.

This implies the expansion

(1 + z)n = (1 + z)n0
(
(1 + z)3

)n1
(
(1 + z)9

)n2 · · ·
(
(1 + z)3

m)nm
= (1 + z)n0

m∏
ν=1

((
1 + z3

ν)
+ 3z3

ν−1
(

1 + z3
ν−1
))nν

=
m∏
ν=0

(
1 + z3

ν)nν
+

m∑
ν=1

3nν(1 + z)n0 · · ·
(

1 + z3
ν−2
)nν−2

· z3ν−1
(

1 + z3
ν−1
)nν−1+1 (

1 + z3
ν)nν−1 · · · (1 + z3

m)nm
modulo 9.

Now, in case nν−1 ≥ 1, one applies the formulae

z3
ν−1
(

1 + z3
ν−1
)2

=
(
1 + z3

ν)− (1 + z3
ν−1
)2

modulo 3

z3
ν−1
(

1 + z3
ν−1
)3

= z3
ν−1 (

1 + z3
ν)

modulo 3

to the terms involving 3ν−1 in the sum, depending on whether nν−1+1 = 2 or nν−1+1 =
3. Finally, every binomial term (1 + z3

r
)n
′
r is expanded using the binomial theorem,
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and subsequently the coefficient of

zk = zk0+3k1+9k2+···+3mkm

is read off in all the terms. This leads directly to (2.1). �

3. The main theorems

Here we prove the actual main results of our paper, namely Theorems 2 and 3 below,
which provide a refinement of (1.2) in the case where p = 3 to modulus 9. The explicit
congruences for the Apéry numbers an(r, s) given in the next section are then simple
consequences. We state the results for s ≥ 1 and s = 0 separately in order to keep
expressions at a moderate size.

Theorem 2. For all positive integers r and s, and non-negative integers n = n0+3n1+
9n2 + · · ·+ 3mnm, where 0 ≤ ni ≤ 2 for all i, we have

an(r, s) ≡
m∏
i=0

ani(r, s) + 3
m∑
ν=1

 m∏
i=0

i 6=ν−1,ν

ani(r, s)

 f(nν−1, nν ; r, s) (mod 9), (3.1)

where

f(nν−1, nν ; r, s) = nν−1(nν−1 + 1)nν

(
s(nν + 1) + (−1)s

(
s(nν − 1) + rnν

))
+ χ(r = 1)(nν−1 + 2)(nν−1 + 1)nν

+ χ(s = 1)((−1)r − 1)(nν−1 − 1)nν−1n
2
ν . (3.2)

Proof. By the definition (1.1) of the Apéry numbers and the Chu–Vandermonde sum-
mation formula, we may write

an(r, s) =
n∑
k=0

(
n

k

)r(
n+ k

k

)s
=

n∑
k=0

(
n

k

)r( n∑
`=0

(
n

`

)(
k

`

))s

.

Now we apply the Lucas-type congruence from Lemma 1 to all three binomial coeffi-
cients on the right-hand side of the above formula. Using the trivial congruences

(a+ 3b)s ≡ as + 3as−1b (mod 9)

and

(a+ 3b)(c+ 3d) ≡ ac+ 3bc+ 3ad (mod 9),

we expand the resulting expression. In this way, we obtain a large number of terms.
Writing ` = `0 + 3`1 + 9`2 + · · ·+ 3m`m, the leading term is

∑
0≤k1,...,km≤2

(
m∏
i=0

(
ni
ki

)r)( ∑
0≤`1,...,`m≤2

m∏
i=0

(
ni
`i

)(
ki
`i

))s

,
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while one obtains 12 more terms which are similar. At this point, the summation over
the `i’s can be carried out easily, in all of the arising terms. This leads to the congruence

an(r, s) ≡
m∏
i=0

ani(r, s)

+ 3r
m∑
ν=1

 m∏
i=0

i 6=ν−1,ν

ani(r, s)

 2∑
kν−1=0

(
1

kν−1 − 1

)(
nν−1
kν−1

)r−1(
nν−1 + kν−1

kν−1

)s
·

(
2∑

kν=0

(
nν − 1

kν

)(
nν
kν

)r−1(
nν + kν
kν

)s)
χ(nν−1 = 0)nν + · · ·

+ 3s
m∑
ν=1

 m∏
i=0

i 6=ν−1,ν

ani(r, s)

 2∑
kν−1=0

(
kν−1 + 1

kν−1 − 1

)(
nν−1
kν−1

)r(
nν−1 + kν−1

kν−1

)s−1
·

(
2∑

kν=0

(
nν + kν − 1

kν

)(
nν
kν

)r(
nν + kν
kν

)s−1)
χ(nν−1 = 0)nν + · · ·

+ 3s
m∑
ν=1

 m∏
i=0

i 6=ν−1,ν

ani(r, s)

 0∑
kν−1=0

(
nν−1 + 1

nν−1 − 1

)(
nν−1
kν−1

)r(
nν−1 + kν−1

kν−1

)s−1
·

(
2∑

kν=0

kν

(
nν + kν − 1

nν

)(
nν
kν

)r(
nν + kν
kν

)s−1)
+ · · · (mod 9),

(3.3)

where each of the dots · · · represents three similar terms. (All the sums above over ν
come from the second line in (2.1).) The sums over kν−1 and kν are written out explic-
itly. The resulting formula is then simplified using elementary congruences modulo 3.
Namely, to simplify powers, we use

na(n+ 1)b ≡ (−1)b−1n(n+ 1) (mod 3), for a, b ≥ 1.

Furthermore, by

χ(n ≡ a (mod 3)) ≡ −(n− a+ 1)(n− a+ 2) (mod 3), (3.4)

we may write

na ≡ χ(a = 0) + (1− χ(a = 0))(−n(n+ 1)− n(n− 1)(−1)a) (mod 3), for a ≥ 0.

Finally, higher powers of nν−1 and nν are lowered by use of the (Fermat) congruence

n3 ≡ n (mod 3).

After these steps, one collects terms, to obtain a congruence of the form

an(r, s) ≡
m∏
i=0

ani(r, s) + 3
m∑
ν=1

 m∏
i=0

i 6=ν−1,ν

ani(r, s)

 f(nν−1, nν ; r, s).
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Upon considerable simplification, one sees that the term f(nν−1, nν ; r, s) can be given
by the right-hand side of (3.2). �

Remark. By applying (3.4) again several times (namely “backwards”), the term
f(nν−1, nν ; r, s) can alternatively be rewritten as

f(nν−1, nν ; r, s) ≡ χ(nν−1 = 1)
(
sχ(nν = 1) + (−1)ssχ(nν = 2)

+ (−1)sr
(
χ(nν = 0)− 1

))
− χ(r = 1)χ(nν−1 = 0)nν

+ χ(s = 1)((−1)r − 1)χ(nν−1 = 2)
(
χ(nν = 0)− 1

)
(mod 3).

(3.5)

Following the same approach, we may establish an analogous result for the (gener-
alised) Franel numbers; that is, for the case where s = 0.

Theorem 3. For all positive integers r and non-negative integers n = n0 + 3n1 + 9n2 +
· · ·+ 3mnm, where 0 ≤ ni ≤ 2 for all i, we have

an(r, 0) ≡
m∏
i=0

ani(r, 0) + 3
m∑
ν=1

 m∏
i=0

i 6=ν−1,ν

ani(r, 0)

 f(nν−1, nν ; r, 0) (mod 9), (3.6)

where

f(nν−1, nν ; r, 0) = χ(r = 1)
(
nν − χ(nν = 2)

)(
χ(nν−1 = 2)− 1

)
−
(
nν + χ(nν = 2)(−1)r

)(
χ(nν−1 = 1)− (−1)rχ(nν−1 = 2)

)
. (3.7)

4. Explicit description of the Apéry numbers modulo 9

We are now going to exploit Theorems 2 and 3 to obtain explicit congruences modulo 9
for the Apéry numbers an(r, s), depending on the congruence classes of r and smodulo 6.
In view of (3.1) and (3.6), we have to analyse the congruence behaviour modulo 9 of
an(r, s) for n = 0, 1, 2, as well as the behaviour modulo 3 of the terms f(nν−1, nν ; r, s)
given by (3.2) (or (3.5)) and (3.7).

We begin with the Apéry numbers for small indices. We have

a0(r, s) = 1, (4.1)

a1(r, s) = 1 + 2s ≡



2 (mod 9), if s ≡ 0 (mod 6),

3 (mod 9), if s ≡ 1 (mod 6),

5 (mod 9), if s ≡ 2 (mod 6),

0 (mod 9), if s ≡ 3 (mod 6),

8 (mod 9), if s ≡ 4 (mod 6),

6 (mod 9), if s ≡ 5 (mod 6),

(4.2)
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and

a2(r, s) = 1 + 2r3s + 6s ≡



3 (mod 9), if r ≡ 0 (mod 6) and s = 0,

4 (mod 9), if r ≡ 1 (mod 6) and s = 0,

6 (mod 9), if r ≡ 2 (mod 6) and s = 0,

1 (mod 9), if r ≡ 3 (mod 6) and s = 0,

0 (mod 9), if r ≡ 4 (mod 6) and s = 0,

7 (mod 9), if r ≡ 5 (mod 6) and s = 0,

1 (mod 9), if r ≡ 0, 2 (mod 3) and s = 1,

4 (mod 9), if r ≡ 1 (mod 3) and s = 1,

1 (mod 9), if s ≥ 2.

(4.3)

Distinguishing between the various cases which arise when r and s run through the
congruence classes modulo 6, we obtain

f(nν−1, nν ; r, s)

≡



0 (mod 3), if r ≡ 0 (mod 3) and s ≡ 0 (mod 3),

χ(nν−1 = 1)nν (mod 3), if r ≡ 0 (mod 6) and s ≡ 1 (mod 6),

χ(nν−1 = 1)
(
χ(nν = 0)− 1

)
(mod 3), if r ≡ 0 (mod 3) and s ≡ 2 (mod 6),

χ(nν−1 = 1)
(
1− χ(nν = 0)

)
(mod 3), if r ≡ 0 (mod 3) and s ≡ 4 (mod 6),

−χ(nν−1 = 1)nν (mod 3), if r ≡ 0 (mod 3) and s ≡ 5 (mod 6),

χ(nν−1 = 1)
(
χ(nν = 0)− 1

)
− χ(nν−1 = 0)nν (mod 3),

if r = 1 and s ≡ 0 (mod 6),

−nν−1χ(nν = 2)− nν (mod 3), if r = s = 1,

(4.4)
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and

f(nν−1, nν ; r, s)

≡



χ(nν = 1)nν−1 − nν −
(
1− χ(nν−1 = 0)

)(
1− χ(nν = 0)

)
(mod 3),

if r = 1, s ≡ 1 (mod 6), and s ≥ 7,

χ(nν−1 = 1)
(
1− χ(nν = 0))− χ(nν−1 = 0

)
nν (mod 3),

if r = 1 and s ≡ 2 (mod 6),

χ(nν−1 = 1)
(
1− χ(nν = 0)

)
− χ(nν−1 = 0)nν (mod 3),

if r = 1 and s ≡ 3 (mod 6),

−χ(nν−1 = 0)nν (mod 3), if r = 1 and s ≡ 4 (mod 6),(
χ(nν−1 = 2)− 1

)
nν + χ(nν−1 = 1)

(
1− χ(nν = 0)

)
(mod 3),

if r = 1 and s ≡ 5 (mod 6),

χ(nν−1 = 1)
(
χ(nν = 0)− 1

)
(mod 3),

if r ≡ 1 (mod 3), r ≥ 4, and s ≡ 0 (mod 6),

χ(nν−1 = 1)nν +
(
1− χ(nν = 0))nν−1 (mod 3),

if r ≡ 1 (mod 6
)
, r ≥ 7, and s = 1,

−χ(nν−1 = 1)χ(nν = 1) (mod 3), if r, s ≡ 1 (mod 6) and r, s ≥ 7,

and if r ≡ 4 (mod 6) and s ≡ 1 (mod 6),

χ(nν−1 = 1)
(
1− χ(nν = 0)

)
(mod 3),

if r ≡ 1 (mod 3), r ≥ 4,

and s ≡ 2, 3 (mod 6),

0 (mod 3), if r ≡ 1 (mod 3), r ≥ 4, and s ≡ 4 (mod 6),

−χ(nν−1 = 1)χ(nν = 2) (mod 3),

if r ≡ 1 (mod 3), r ≥ 4, and s ≡ 5 (mod 6),

χ(nν−1 = 1)
(
1− χ(nν = 0)

)
(mod 3),

if r ≡ 2 (mod 3) and s ≡ 0 (mod 6),

χ(nν−1 = 1)χ(nν = 2) (mod 3), if r ≡ 2 (mod 6) and s ≡ 1 (mod 6),

0 (mod 3), if r ≡ 2 (mod 3) and s ≡ 2 (mod 6),

χ(nν−1 = 1)
(
χ(nν = 0)− 1

)
(mod 3),

if r ≡ 2 (mod 3) and s ≡ 3 (mod 6),

χ(nν−1 = 1)
(
χ(nν = 0)− 1

)
(mod 3),

if r ≡ 2 (mod 3) and s ≡ 4 (mod 6),

χ(nν−1 = 1)χ(nν = 1) (mod 3), if r ≡ 2 (mod 3) and s ≡ 5 (mod 6),

χ(nν−1 = 2)
(
χ(nν = 0)− 1

)
+ χ(nν−1 = 1)nν (mod 3),

if r ≡ 3 (mod 6) and s = 1,

χ(nν−1 = 1)nν (mod 3), if r ≡ 3 (mod 6), s ≡ 1 (mod 6), and s ≥ 7,

χ(nν−1 = 1)nν −
(
1− χ(nν−1 = 0)

)(
1− χ(nν = 0)

)
(mod 3),

if r ≡ 5 (mod 6) and s = 1,

χ(nν−1 = 1)χ(nν = 2) (mod 3), if r ≡ 5 (mod 6), s ≡ 1 (mod 6), and s ≥ 7,

(4.5)



GENERALISED APÉRY NUMBERS MODULO 9 9

and

f(nν−1, nν ; r, s)

≡



(
χ(nν−1 = 2)− χ(nν−1 = 1)

)(
χ(nν = 2) + nν

)
(mod 3),

if r ≡ 0 (mod 6), r ≥ 6, and s = 0,(
1 + χ(nν−1 = 1)

)(
χ(nν = 2)− nν

)
(mod 3),

if r = 1 and s = 0,(
χ(nν−1 = 1) + χ(nν−1 = 2)

)(
χ(nν = 2)− nν

)
(mod 3),

if r ≡ 1, 3, 5 (mod 6), r ≥ 3, and s = 0,(
χ(nν−1 = 2)− χ(nν−1 = 1)

)(
χ(nν = 2) + nν

)
(mod 3),

if r ≡ 2, 4 (mod 6) and s = 0.

(4.6)

Remark. By examining (4.4)–(4.6), one sees that Gessel’s result [8, Theorem 3(iii)],
namely that

an(r, s) ≡
m∏
i=0

ani(r, s) (mod 9) (4.7)

for r = s = 2, does not only hold in that case, but more generally for r ≡ 2 (mod 3)
and s ≡ 2 (mod 6), and also for r ≡ s ≡ 0 (mod 3), and for r ≡ 1 (mod 3), r ≥ 4, and
s ≡ 4 (mod 6).

If we combine Theorems 2 and 3 with (4.1)–(4.6), we obtain detailed results con-
cerning the behaviour of an(r, s) modulo 9. We confine ourselves here to providing six
results representative for the total of 27 listed in [11].

Corollary 4. If r and s are positive integers with r ≡ 0 (mod 3) and s ≡ 0 (mod 6),
then the Apéry numbers an(r, s) obey the following congruences modulo 9:

(i) an(r, s) ≡ 1 (mod 9) if, and only if, the 3-adic expansion of n contains 6k
digits 1, for some k, and otherwise only 0’s and 2’s;

(ii) an(r, s) ≡ 2 (mod 9) if, and only if, the 3-adic expansion of n contains 6k + 1
digits 1, for some k, and otherwise only 0’s and 2’s;

(iii) an(r, s) ≡ 4 (mod 9) if, and only if, the 3-adic expansion of n contains 6k + 2
digits 1, for some k, and otherwise only 0’s and 2’s;

(iv) an(r, s) ≡ 5 (mod 9) if, and only if, the 3-adic expansion of n contains 6k + 5
digits 1, for some k, and otherwise only 0’s and 2’s;

(v) an(r, s) ≡ 7 (mod 9) if, and only if, the 3-adic expansion of n contains 6k + 4
digits 1, for some k, and otherwise only 0’s and 2’s;

(vi) an(r, s) ≡ 8 (mod 9) if, and only if, the 3-adic expansion of n contains 6k + 3
digits 1, for some k, and otherwise only 0’s and 2’s;

(vii) in the cases not covered by Items (i)–(vi), an(r, s) is divisible by 9; in particular,
an(r, s) 6≡ 3, 6 (mod 9) for all n.

Corollary 5. If r and s are positive integers with r ≡ 0 (mod 6) and s ≡ 1 (mod 6),
or with r ≡ 3 (mod 6), s ≡ 1 (mod 6), and s ≥ 7, then the Apéry numbers an(r, s) obey
the following congruences modulo 9:

(i) an(r, s) ≡ 1 (mod 9) if, and only if, the 3-adic expansion of n contains 0’s and
2’s only;
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(ii) an(r, s) ≡ 3 (mod 9) if, and only if, the 3-adic expansion of n has exactly one
occurrence of the string 01 (including an occurrence of a 1 at the beginning) or
of the string 11 — but not both — and otherwise contains only 0’s and 2’s;

(iii) in the cases not covered by Items (i)–(ii), an(r, s) is divisible by 9; in particular,
an(r, s) 6≡ 2, 4, 5, 6, 7, 8 (mod 9) for all n.

Corollary 6. If r and s are positive integers with r ≡ 0 (mod 3) and s ≡ 3 (mod 6),
then the Apéry numbers an(r, s) obey the following congruences modulo 9:

(i) an(r, s) ≡ 1 (mod 9) if, and only if, the 3-adic expansion of n contains 0’s and
2’s only;

(ii) in all other cases an(r, s) is divisible by 9; in particular, an(r, s) 6≡ 2, 3, 4, 5, 6, 7,
8 (mod 9) for all n.

Corollary 7. If r and s are positive integers with r ≡ 2 (mod 3) and s ≡ 0 (mod 6),
then the Apéry numbers an(r, s) obey the following congruences modulo 9:

(i) an(r, s) ≡ 1 (mod 9) if, and only if, the 3-adic expansion of n has 2d digits 1, o1
occurrences of the string 11, o2 occurrences of the string 21, and d + o1 − o2 ≡
0 (mod 3);

(ii) an(r, s) ≡ 2 (mod 9) if, and only if, the 3-adic expansion of n has 2d + 1
digits 1, o1 occurrences of the string 11, o2 occurrences of the string 21, and
d+ o1 − o2 ≡ 0 (mod 3);

(iii) an(r, s) ≡ 4 (mod 9) if, and only if, the 3-adic expansion of n has 2d digits 1, o1
occurrences of the string 11, o2 occurrences of the string 21, and d + o1 − o2 ≡
1 (mod 3);

(iv) an(r, s) ≡ 5 (mod 9) if, and only if, the 3-adic expansion of n has 2d + 1
digits 1, o1 occurrences of the string 11, o2 occurrences of the string 21, and
d+ o1 − o2 ≡ 2 (mod 3);

(v) an(r, s) ≡ 7 (mod 9) if, and only if, the 3-adic expansion of n has 2d digits 1, o1
occurrences of the string 11, o2 occurrences of the string 21, and d + o1 − o2 ≡
2 (mod 3);

(vi) an(r, s) ≡ 8 (mod 9) if, and only if, the 3-adic expansion of n has 2d + 1
digits 1, o1 occurrences of the string 11, o2 occurrences of the string 21, and
d+ o1 − o2 ≡ 1 (mod 3);

(vii) in the cases not covered by Items (i)–(vi), an(r, s) is divisible by 9; in particular,
an(r, s) 6≡ 3, 6 (mod 9) for all n.

Corollary 8. If r and s are positive integers with r ≡ 2 (mod 6) and s ≡ 1 (mod 6),
or with r ≡ 5 (mod 6), s ≡ 1 (mod 6), and s ≥ 7, then the Apéry numbers an(r, s) obey
the following congruences modulo 9:

(i) an(r, s) ≡ 1 (mod 9) if, and only if, the 3-adic expansion of n contains 0’s and
2’s only;

(ii) an(r, s) ≡ 3 (mod 9) if, and only if, the 3-adic expansion of n has exactly one
occurrence of the string 01 (including an occurrence of a 1 at the beginning) and
otherwise contains only 0’s and 2’s;

(iii) an(r, s) ≡ 6 (mod 9) if, and only if, the 3-adic expansion of n has exactly one
occurrence of the string 21 and otherwise contains only 0’s and 2’s;

(iv) in the cases not covered by Items (i)–(iii), an(r, s) is divisible by 9; in particular,
an(r, s) 6≡ 2, 4, 5, 7, 8 (mod 9) for all n.
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For r = 2 and s = 1, this corollary establishes Conjecture 65 in [10].

Corollary 9. If r and s are positive integers with r ≡ 2 (mod 3) and s ≡ 2 (mod 6),
then the Apéry numbers an(r, s) obey the following congruences modulo 9:

(i) an(r, s) ≡ 1 (mod 9) if, and only if, the 3-adic expansion of n contains 6k
digits 1, for some k, and otherwise only 0’s and 2’s;

(ii) an(r, s) ≡ 2 (mod 9) if, and only if, the 3-adic expansion of n contains 6k + 5
digits 1, for some k, and otherwise only 0’s and 2’s;

(iii) an(r, s) ≡ 4 (mod 9) if, and only if, the 3-adic expansion of n contains 6k + 4
digits 1, for some k, and otherwise only 0’s and 2’s;

(iv) an(r, s) ≡ 5 (mod 9) if, and only if, the 3-adic expansion of n contains 6k + 1
digits 1, for some k, and otherwise only 0’s and 2’s;

(v) an(r, s) ≡ 7 (mod 9) if, and only if, the 3-adic expansion of n contains 6k + 2
digits 1, for some k, and otherwise only 0’s and 2’s;

(vi) an(r, s) ≡ 8 (mod 9) if, and only if, the 3-adic expansion of n contains 6k + 3
digits 1, for some k, and otherwise only 0’s and 2’s;

(vii) in the cases not covered by Items (i)–(vi), an(r, s) is divisible by 9; in particular,
an(r, s) 6≡ 3, 6 (mod 9) for all n.

For r = s = 2, this corollary establishes Conjecture 66 in [10].
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