1,658 research outputs found

    High frequency sound in superfluid 3He-B

    Full text link
    We present measurements of the absolute phase velocity of transverse and longitudinal sound in superfluid 3He-B at low temperature, extending from the imaginary squashing mode to near pair-breaking. Changes in the transverse phase velocity near pair-breaking have been explained in terms of an order parameter collective mode that arises from f-wave pairing interactions, the so-called J=4- mode. Using these measurements, we establish lower bounds on the energy gap in the B-phase. Measurement of attenuation of longitudinal sound at low temperature and energies far above the pair-breaking threshold, are in agreement with the lower bounds set on pair-breaking. Finally, we discuss our estimations for the strength of the f-wave pairing interactions and the Fermi liquid parameter, F4s.Comment: 15 pages, 8 figures, accepted to J. Low Temp. Phy

    Microphysics of SO(10) Cosmic Strings

    Full text link
    We uncover a rich microphysical structure for SO(10) cosmic strings. For the abelian string the electroweak symmetry is restored around it in a region depending on the electroweak scale. A rich structure of nonabelian strings is found. Some of these also restore the electroweak symmetry. We investigate the zero mode structure of our strings. Whilst there are right handed neutrino zero modes for the abelian string, they do not survive the electroweak phase transition. In general the nonabelian strings do not have fermion zero modes. We consider the generalisation of our results to other theories and consider cosmological consequences of them.Comment: 34 pages, LATEX. Replaced version is restructured, and has small correction to fermion zero mode analysis. To be published in Physical Review

    Geography but not alternative host species explain the spread of raccoon rabies virus in Vermont

    Get PDF
    In North America, the raccoon-associated variant of rabies virus (RRV) is of special concern, given its relatively rapid spread throughout the eastern USA and its potential public health impact due to high raccoon host densities in urban areas. Northward expansion of this epizootic included an outbreak in the Canadian province of Quebec in 2006–2009 due to trans-border spread from the State of Vermont. To inform a more proactive approach to future control efforts, this study uses phylogenetic analyses to explore the role of geography and alternative carnivore hosts in the dynamics of RRV spread within Vermont. Specifically, we sought to examine whether striped skunks, a species frequently infected by RRV, could be part of the maintenance host community. Whole genome sequencing of 160 RRV samples from Vermont and neighbouring US states were used for fine-scale phylogeographic analyses. Results, together with the complete surveillance record of raccoon rabies since its entry into Vermont in 1994, document incursions by two distinct viral lineages and identify topographical features of the landscape which have significantly influenced viral spread, resulting in a complex distribution pattern of viral variants throughout the state. Results of phylogenetic cluster analysis and discrete state reconstruction contained some evidence of skunk-to-skunk and skunk-to-raccoon transmission but overall failed to support a role for skunks as alternative maintenance hosts

    Scattering off an SO(10) cosmic string

    Full text link
    The scattering of fermions from the abelian string arising during the phase transition SO(10)→SU(5)×Z2SO(10) \rightarrow SU(5) \times Z_2 induced by the Higgs in the 126 representation is studied. Elastic cross-sections and baryon number violating cross-sections due to the coupling to gauge fields in the core of the string are computed by both a first quantised method and a perturbative second quantised method. The elastic cross-sections are found to be Aharonov-Bohm type. However, there is a marked asymmetry between the scattering cross-sections for left and right handed fields. The catalysis cross-sections are small, depending on the grand unified scale. If cosmic strings were observed our results could help tie down the underlying gauge group.Comment: 20 page

    Towards a Stringy Resolution of the Cosmological Singularity

    Full text link
    We study cosmological solutions to the low-energy effective action of heterotic string theory including possible leading order α′\alpha' corrections and a potential for the dilaton. We consider the possibility that including such stringy corrections can resolve the initial cosmological singularity. Since the exact form of these corrections is not known the higher-derivative terms are constructed so that they vanish when the metric is de Sitter spacetime. The constructed terms are compatible with known restrictions from scattering amplitude and string worldsheet beta-function calculations. Analytic and numerical techniques are used to construct a singularity-free cosmological solution. At late times and low-curvatures the metric is asymptotically Minkowski and the dilaton is frozen. In the high-curvature regime the universe enters a de Sitter phase.Comment: 6 pages, 2 Figures; minor revisions; references added; REVTeX 4; version to appear in Phys. Rev.

    Magnetoresistance of UPt3

    Full text link
    We have performed measurements of the temperature dependence of the magnetoresistance up to 9 T in bulk single crystals of UPt3 with the magnetic field along the b axis, the easy magnetization axis. We have confirmed previous results for transverse magnetoresistance with the current along the c axis, and report measurements of the longitudinal magnetoresistance with the current along the b axis. The presence of a linear term in both cases indicates broken orientational symmetry associated with magnetic order. With the current along the c axis the linear term appears near 5 K, increasing rapidly with decreasing temperature. For current along the b axis the linear contribution is negative.Comment: 6 pages, 3 figures, submitted to Quantum Fluids and Solids Conference (QFS 2006

    Superradiation from Crystals of High-Spin Molecular Nanomagnets

    Full text link
    Phenomenological theory of superradiation from crystals of high-spin molecules is suggested. We show that radiation friction can cause a superradiation pulse and investigate the role of magnetic anisotropy, external magnetic field and dipole-dipole interactions. Depending on the contribution of all these factors at low temperature, several regimes of magnetization of crystal sample are described. Very fast switch of magnetization's direction for some sets of parameters is predicted.Comment: 10 pages, 3 figure
    • …
    corecore