1,548 research outputs found
The development of primary teacher education at the Institute of Education (London), 1977–1986
This article expands on Aldrich and Woodin’s contributions on the development of primary teacher education at IOE (Institute of Education), UCL’s Faculty of Education and Society (University College London, UK). It focuses on the Primary Postgraduate Certificate of Education (PGCE); the years before it began and its development between 1977 and 1986. Relevant literature and first-hand accounts provide background and progress. Events leading to the establishment of the Primary PGCE at IOE are discussed, before describing the course itself with its vicissitudes and progress, and internal and external politics. Changes in emphasis and structure are reviewed, together with the influences of central government and its education departments. Demographics of population decline and growth are relevant to the progress of the Primary PGCE, which grew numerically and in stature. Key organisational and structural developments of the Primary PGCE are discussed. It will be seen how the IOE itself and Early Years and Primary courses, with its staff, influence policy and practice, internally and externally. The article concludes that the primary initial teacher education remains unfinished business
Crossing Statistic: Bayesian interpretation, model selection and resolving dark energy parametrization problem
By introducing Crossing functions and hyper-parameters I show that the
Bayesian interpretation of the Crossing Statistics [1] can be used trivially
for the purpose of model selection among cosmological models. In this approach
to falsify a cosmological model there is no need to compare it with other
models or assume any particular form of parametrization for the cosmological
quantities like luminosity distance, Hubble parameter or equation of state of
dark energy. Instead, hyper-parameters of Crossing functions perform as
discriminators between correct and wrong models. Using this approach one can
falsify any assumed cosmological model without putting priors on the underlying
actual model of the universe and its parameters, hence the issue of dark energy
parametrization is resolved. It will be also shown that the sensitivity of the
method to the intrinsic dispersion of the data is small that is another
important characteristic of the method in testing cosmological models dealing
with data with high uncertainties.Comment: 14 pages, 4 figures, discussions extended, 1 figure and two
references added, main results unchanged, matches the final version to be
published in JCA
A case of an anomalous pectoralis major muscle
We present a case of a right sided accessory head of the pectoralis major muscle
located inferior to its abdominal head. This variation was found during a routine
anatomy dissection at the American University of the Caribbean School of Medicine.
The muscle fibres of the accessory head of the pectoralis major muscle arose
from those of the serratus anterior muscle and travelled superolaterally towards
the axilla. The accessory muscle terminated by fusing with the tendinous fibres of
the pectoralis major muscle as they underwent their normal anatomical rotation
before insertion upon the lateral lip of the bicipital groove of the humerus.
Although variations in the pectoral muscles are not uncommon, this case appears
to be unique in the literature. The possible clinical implications are discussed
Recommended from our members
Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr – Part 2: A new reconstruction of the interplanetary magnetic field
We present a new reconstruction of the interplanetary magnetic field (IMF, B) for 1846–2012 with a full analysis of errors, based on the homogeneously constructed IDV(1d)composite of geomagnetic activity presented in Part 1 (Lockwood et al., 2013a). Analysis of the dependence of the commonly used geomagnetic indices on solar wind parameters is presented which helps explain why annual means of interdiurnal range data, such as the new composite, depend only on the IMF with only a very weak influence of the solar wind flow speed. The best results are obtained using a polynomial (rather than a linear) fit of the form B = χ · (IDV(1d) − β)α with best-fit coefficients χ = 3.469, β = 1.393 nT, and α = 0.420. The results are contrasted with the reconstruction of the IMF since 1835 by Svalgaard and Cliver (2010)
Recommended from our members
Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr – Part 1: A new geomagnetic data composite
We present a new composite of geomagnetic activity which is designed to be as homogeneous in its construction as possible. This is done by only combining data that, by virtue of the locations of the source observatories used, have similar responses to solar wind and IMF (interplanetary magnetic field) variations. This will enable us (in Part 2, Lockwood et al., 2013a) to use the new index to reconstruct the interplanetary magnetic field, B, back to 1846 with a full analysis of errors. Allowance is made for the effects of secular change in the geomagnetic field. The composite uses interdiurnal variation data from Helsinki for 1845–1890 (inclusive) and 1893–1896 and from Eskdalemuir from 1911 to the present. The gaps are filled using data from the Potsdam (1891–1892 and 1897–1907) and the nearby Seddin observatories (1908–1910) and intercalibration achieved using the Potsdam–Seddin sequence. The new index is termed IDV(1d) because it employs many of the principles of the IDV index derived by Svalgaard and Cliver (2010), inspired by the u index of Bartels (1932); however, we revert to using one-day (1d) means, as employed by Bartels, because the use of near-midnight values in IDV introduces contamination by the substorm current wedge auroral electrojet, giving noise and a dependence on solar wind speed that varies with latitude. The composite is compared with independent, early data from European-sector stations, Greenwich, St Petersburg, Parc St Maur, and Ekaterinburg, as well as the composite u index, compiled from 2–6 stations by Bartels, and the IDV index of Svalgaard and Cliver. Agreement is found to be extremely good in all cases, except two. Firstly, the Greenwich data are shown to have gradually degraded in quality until new instrumentation was installed in 1915. Secondly, we infer that the Bartels u index is increasingly unreliable before about 1886 and overestimates the solar cycle amplitude between 1872 and 1883 and this is amplified in the proxy data used before 1872. This is therefore also true of the IDV index which makes direct use of the u index values
Torsion and the Gravity Dual of Parity Symmetry Breaking in AdS4/CFT3 Holography
We study four dimensional gravity with a negative cosmological constant
deformed by the Nieh-Yan torsional topological invariant with a
spacetime-dependent coefficient. We find an exact solution of the Euclidean
system, which we call the torsion vortex, having two asymptotic AdS4 regimes
supported by a pseudoscalar with a kink profile. We propose that the torsion
vortex is the holographic dual of a three dimensional system that exhibits
distinct parity breaking vacua. The torsion vortex represents a (holographic)
transition between these distinct vacua. We expect that from the boundary point
of view, the torsion vortex represents a `domain wall' between the two distinct
vacua.
From a bulk point of view, we point out an intriguing identification of the
parameters of the torsion vortex with those of an Abrikosov vortex in a Type I
superconductor. Following the analogy, we find that external Kalb-Ramond flux
then appears to support bubbles of flat spacetime within an asymptotically AdS
geometry.Comment: 26 pages, 4 figures; v2: minor improvements, references adde
Microfluidic and Nanofluidic Cavities for Quantum Fluids Experiments
The union of quantum fluids research with nanoscience is rich with
opportunities for new physics. The relevant length scales in quantum fluids,
3He in particular, are comparable to those possible using microfluidic and
nanofluidic devices. In this article, we will briefly review how the physics of
quantum fluids depends strongly on confinement on the microscale and nanoscale.
Then we present devices fabricated specifically for quantum fluids research,
with cavity sizes ranging from 30 nm to 11 microns deep, and the
characterization of these devices for low temperature quantum fluids
experiments.Comment: 12 pages, 3 figures, Accepted to Journal of Low Temperature Physic
Brane Universes with Gauss-Bonnet-Induced-Gravity
The DGP brane world model allows us to get the observed late time
acceleration via modified gravity, without the need for a ``dark energy''
field. This can then be generalised by the inclusion of high energy terms, in
the form of a Gauss-Bonnet bulk. This is the basis of the
Gauss-Bonnet-Induced-Gravity (GBIG) model explored here with both early and
late time modifications to the cosmological evolution. Recently the simplest
GBIG models (Minkowski bulk and no brane tension) have been analysed. Two of
the three possible branches in these models start with a finite density
``Big-Bang'' and with late time acceleration. Here we present a comprehensive
analysis of more general models where we include a bulk cosmological constant
and brane tension. We show that by including these factors it is possible to
have late time phantom behaviour.Comment: 12 pages, 19 figures. Minor modifications to text, comments on
phantom behaviour added. References added. As submitted to JCA
Effect of an extreme flood event on solute transport and resilience of a mine water treatment system in a mineralised catchment
Extreme rainfall events are predicted to become more frequent with climate change and can have a major bearing on instream solute and pollutant transport in mineralised catchments. The Coledale Beck catchment in north-west England was subject to an extreme rainfall event in December 2015 that equated to a 1 in 200-year event. The catchment contains the UK's first passive metal mine water treatment system, and as such had been subject to intense monitoring of solute dynamics before and after commissioning. Due to this monitoring record, the site provides a unique opportunity to assess the effects of a major storm event on (1) catchment-scale solute transport, and (2) the resilience of the new and novel passive treatment system to extreme events. Monitoring suggests a modest decline in treatment efficiency over time that is not synchronous with the storm event and explained instead by changes in system hydraulic efficiency. There was no apparent flushing of the mine system during the event that could potentially have compromised treatment system performance. Analysis of metal transport in the catchment downstream of the mine suggests relatively subtle changes in instream chemistry with modest but statistically-significant reductions in zinc in the lower catchment irrespective of flow condition after the extreme event, but most parameters of interest show no significant change. Increased export of colloidal iron and aluminium is associated with major landslips in the mid-catchment after the storm and provide fresh sorption sites to attenuate dissolved zinc more rapidly in these locations, corroborated by laboratory experiments utilising site materials to investigate the attenuation/release of metals from stream and terrestrial sediments. The data are important as they show both the resilience of passive mine water treatment systems to extreme events and the importance of catchment-scale monitoring to ensure continued effectiveness of treatment initiatives after major perturbation
- …