791 research outputs found
Considerations for a dual accelerometer/gyroscope using continuous opposing atomic beams
48th Winter Colloquium on the Physics of Quantum Electronics, Snowbird, Utah, January 7-12, 2018We report on studies completed in the design of a dual atom beam accelerometer/ gyroscope.
As demonstrated in [1,2], two opposing beam atom interferometers can distinguish between
linear and rotational motion. Our design uses the transit time of slow moving atoms that
originate from a 2D MOT through continuous Raman laser fields as the ‘pulse’ of light’ for light pulse interferometry. Using both Monte Carlo methods as well as analytic expressions, we explore the effects of longitudinal and transverse velocity spread, laser beam profile and scattered light on the contrast of the interference fringe. We present the status of the
construction of our prototype (Fig. 1). We present measurements of narrow velocity profiles
from our source and demonstrate Raman spectroscopy using a cold continuous source.This work was funded by the Office of the Secretary of Defens
Design of continuous circulation sub for gas drilling and the mechanical analysis on the sub body
AbstractGas drilling, as an important part of underbalanced drilling, can increase drilling speed. But in the process of conventional gas drilling, it tends to cause cutting settlement, borehole collapse, sticking and other safety hazards because gas circulation has to be interrupted. Therefore, this paper presents a continuous circulation sub which can be installed and removed easily. With this sub, gas circulation will not be interrupted when drilling tools are connected and removed. This sub is composed of body, main valve, bypass valve and side entry sub. The structure design of its key components (i.e. main and bypass valves) were fulfilled. Based on statics analysis on the sub body, its force situations under extension, torsion and internal pressure were simulated by using the ANSYS finite element analysis software. It is shown that its stress distribution trend is consistent with its elastic–plastic mechanics analysis results. Stress concentrates around the two round holes of the sub body, and the maximum deformation amount is still at the stage of elastic deformation. The analysis results are in line with the elastic–plastic mechanics analysis results, and the requirement of body strength is satisfied. This paper provides a new program to guarantee the drilling safety of extended-reach wells, underbalanced wells and narrow-density window wells
The effect of extra dimensions on gravity wave bursts from cosmic string cusps
We explore the kinematical effect of having extra dimensions on the gravity
wave emission from cosmic strings. Additional dimensions both round off cusps,
and reduce the probability of their formation. We recompute the gravity wave
burst, taking into account these two factors, and find a potentially
significant damping on the gravity waves of the strings.Comment: 33 pages, 8 figures, published versio
Resonance Superfluidity: Renormalization of Resonance Scattering Theory
We derive a theory of superfluidity for a dilute Fermi gas that is valid when
scattering resonances are present. The treatment of a resonance in many-body
atomic physics requires a novel mean-field approach starting from an
unconventional microscopic Hamiltonian. The mean-field equations incorporate
the microscopic scattering physics, and the solutions to these equations
reproduce the energy-dependent scattering properties. This theory describes the
high- behavior of the system, and predicts a value of which is a
significant fraction of the Fermi temperature. It is shown that this novel
mean-field approach does not break down for typical experimental circumstances,
even at detunings close to resonance. As an example of the application of our
theory we investigate the feasibility for achieving superfluidity in an
ultracold gas of fermionic Li.Comment: 15 pages, 10 figure
Seminal magnetic fields from Inflato-electromagnetic Inflation
We extend some previous attempts to explain the origin and evolution of
primordial magnetic fields during inflation induced from a 5D vacuum. We show
that the usual quantum fluctuations of a generalized 5D electromagnetic field
cannot provide us with the desired magnetic seeds. We show that special fields
without propagation on the extra non-compact dimension are needed to arrive to
appreciable magnetic strengths. We also identify a new magnetic tensor field
in this kind of extra dimensional theories. Our results are in very
good agreement with observational requirements, in particular from TeV Blazars
and CMB radiation limits we obtain that primordial cosmological magnetic fields
should be close scale invariance.Comment: Improved version. arXiv admin note: text overlap with arXiv:1007.3891
by other author
Self-consistent model of ultracold atomic collisions and Feshbach resonances in tight harmonic traps
We consider the problem of cold atomic collisions in tight traps, where the
absolute scattering length may be larger than the trap size. As long as the
size of the trap ground state is larger than a characteristic length of the van
der Waals potential, the energy eigenvalues can be computed self-consistently
from the scattering amplitude for untrapped atoms. By comparing with the exact
numerical eigenvalues of the trapping plus interatomic potentials, we verify
that our model gives accurate eigenvalues up to milliKelvin energies for single
channel s-wave scattering of Na atoms in an isotropic harmonic trap,
even when outside the Wigner threshold regime. Our model works also for
multi-channel scattering, where the scattering length can be made large due to
a magnetically tunable Feshbach resonance.Comment: 7 pages, 4 figures (PostScript), submitted to Physical Review
Topological Defects and CMB anisotropies : Are the predictions reliable ?
We consider a network of topological defects which can partly decay into
neutrinos, photons, baryons, or Cold Dark Matter. We find that the degree-scale
amplitude of the cosmic microwave background (CMB) anisotropies as well as the
shape of the matter power spectrum can be considerably modified when such a
decay is taken into account. We conclude that present predictions concerning
structure formation by defects might be unreliable.Comment: 14 pages, accepted for publication in PR
Relations between Financing and Output in the Not-for-Profit Hospital
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68639/2/10.1177_107755878804500204.pd
Large-scale magnetic fields from inflation due to a -even Chern-Simons-like term with Kalb-Ramond and scalar fields
We investigate the generation of large-scale magnetic fields due to the
breaking of the conformal invariance in the electromagnetic field through the
-even dimension-six Chern-Simons-like effective interaction with a fermion
current by taking account of the dynamical Kalb-Ramond and scalar fields in
inflationary cosmology. It is explicitly demonstrated that the magnetic fields
on 1Mpc scale with the field strength of G at the present time
can be induced.Comment: 18 pages, 6 figures, version accepted for publication in Eur. Phys.
J.
- …