8,469 research outputs found

    Development of audiovisual comprehension skills in prelingually deaf children with cochlear implants

    Get PDF
    Objective: The present study investigated the development of audiovisual comprehension skills in prelingually deaf children who received cochlear implants. Design: We analyzed results obtained with the Common Phrases (Robbins et al., 1995) test of sentence comprehension from 80 prelingually deaf children with cochlear implants who were enrolled in a longitudinal study, from pre-implantation to 5 years after implantation. Results: The results revealed that prelingually deaf children with cochlear implants performed better under audiovisual (AV) presentation compared with auditory-alone (A-alone) or visual-alone (V-alone) conditions. AV sentence comprehension skills were found to be strongly correlated with several clinical outcome measures of speech perception, speech intelligibility, and language. Finally, pre-implantation V-alone performance on the Common Phrases test was strongly correlated with 3-year postimplantation performance on clinical outcome measures of speech perception, speech intelligibility, and language skills. Conclusions: The results suggest that lipreading skills and AV speech perception reflect a common source of variance associated with the development of phonological processing skills that is shared among a wide range of speech and language outcome measures

    A longitudinal study of audiovisual speech perception by hearing-impaired children with cochlear implants

    Get PDF
    The present study investigated the development of audiovisual speech perception skills in children who are prelingually deaf and received cochlear implants. We analyzed results from the Pediatric Speech Intelligibility (Jerger, Lewis, Hawkins, & Jerger, 1980) test of audiovisual spoken word and sentence recognition skills obtained from a large group of young children with cochlear implants enrolled in a longitudinal study, from pre-implantation to 3 years post-implantation. The results revealed better performance under the audiovisual presentation condition compared with auditory-alone and visual-alone conditions. Performance in all three conditions improved over time following implantation. The results also revealed differential effects of early sensory and linguistic experience. Children from oral communication (OC) education backgrounds performed better overall than children from total communication (TC backgrounds. Finally, children in the early-implanted group performed better than children in the late-implanted group in the auditory-alone presentation condition after 2 years of cochlear implant use, whereas children in the late-implanted group performed better than children in the early-implanted group in the visual-alone condition. The results of the present study suggest that measures of audiovisual speech perception may provide new methods to assess hearing, speech, and language development in young children with cochlear implants

    CFD Validation Experiment of a Mach 2.5 Axisymmetric Shock-Wave Boundary-Layer Interaction

    Get PDF
    Preliminary results of an experimental investigation of a Mach 2.5 two-dimensional axisymmetric shock-wave/boundary-layer interaction (SWBLI) are presented. The purpose of the investigation is to create a SWBLI dataset specifically for CFD validation purposes. Presented herein are the details of the facility and preliminary measurements characterizing the facility and interaction region. The results will serve to define the region of interest where more detailed mean and turbulence measurements will be made

    Experimental investigation of turbulent flow through a circular-to-rectangular transition duct

    Get PDF
    Steady, incompressible, turbulent, swirl-free flow through a circular-to-rectangular transition duck was studied experimentally. The cross-sectional area remains the same at the exit as at the inlet, but varies through the transition section to a maximum value approximately 15 percent above the inlet value. The cross-sectional geometry everywhere along the duct is defined by the equation of a superellipse. Mean and turbulence data were accumulated utilizing pressure and hot-wire instrumentation at five stations along the test section. Data are presented for operating bulk Reynolds numbers of 88,000 and 390,000. Measured quantities include total and static pressure, the three components of the mean velocity vector, and the six components of the Reynolds stress tensor. In addition to the transition duct measurements, a hot-wire technique which relies on the sequential use of single rotatable normal and slant-wire probes was proposed. The technique is applicable for measurement of the total mean velocity vector and the complete Reynolds stress tensor when the primary flow is arbitrarily skewed relative to a plane which lies normal to the probe axis of rotation

    The Evolution of E-Books

    Get PDF

    Ethylene Trace-gas Techniques for High-speed Flows

    Get PDF
    Three applications of the ethylene trace-gas technique to high-speed flows are described: flow-field tracking, air-to-air mixing, and bleed mass-flow measurement. The technique involves injecting a non-reacting gas (ethylene) into the flow field and measuring the concentration distribution in a downstream plane. From the distributions, information about flow development, mixing, and mass-flow rates can be dtermined. The trace-gas apparatus and special considerations for use in high-speed flow are discussed. A description of each application, including uncertainty estimates is followed by a demonstrative example

    Effect of Flow Misalignment and Multi-Hole Interaction on Boundary-Layer Bleed Hole Flow Coefficient Behavior

    Get PDF
    The effect of flow misalignment on the flow coefficient behavior of a 20 deg. boundary-layer bleed hole and the effect of the interaction between two 90 deg. bleed holes separated by two hole diameters on flow coefficient behavior has been studied experimentally. Both tests were run at freestream Mach numbers of 0.61, 1.62 and 2.49. The flow misalignment study was conducted over a range of 0 to 30 deg. The results show that neither flow misalignment nor hole interaction has much effect on the flow coefficient for the subsonic case. For the supersonic cases, flow misalignment causes significant degradation in the performance of the slant hole. For the supersonic normal hole interaction cases, depending on the hole orientation, either an increase or decrease in overall flow coefficient was observed. The largest change in flow coefficient, 6% increase at near choke conditions, occurred when the holes were oriented in line with the flow direction

    Effects of Distortion on Mass Flow Plug Calibration

    Get PDF
    A numerical, and experimental investigation to study the effects of flow distortion on a Mass Flow Plug (MFP) used to control and measure mass-flow during an inlet test has been conducted. The MFP was first calibrated using the WIND-US flow solver for uniform (undistorted) inflow conditions. These results are shown to compare favorably with an experimental calibration under similar conditions. The effects of distortion were investigated by imposing distorted flow conditions taken from an actual inlet test to the inflow plane of the numerical simulation. The computational fluid dynamic (CFD) based distortion study only showed the general trend in mass flow rate. The study used only total pressure as the upstream boundary condition, which was not enough to define the flow. A better simulation requires knowledge of the turbulence structure and a specific distortion pattern over a range of plug positions. It is recommended that future distortion studies utilize a rake with at least the same amount of pitot tubes as the AIP rake

    Experimental Investigation of Crossing Shock Wave-Turbulent Boundary Layer-Bleed Interaction

    Get PDF
    Results of an experimental investigation of a symmetric crossing shock wave/turbulent boundary layer/bleed interaction are presented for a freestream unit Reynolds number of 1.68 x 10(exp 7)/m, a Mach number of 2.81, and deflection angles of 8 degrees. The data obtained in this study are bleed mass flow rate using a trace gas technique, qualitative information in the form of oil flow visualization, flow field Pitot pressures, and static pressure measurements using pressure sensitive paint. The main objective of this test is two-fold. First, this study is conducted to explore boundary layer control through mass flow removal near a large region of separated flow caused by the interaction of a double fin-induced shock wave and an incoming turbulent boundary layer. Also, a comprehensive data set is needed for computational fluid dynamics code validation

    Fundamental Inlet Bleed Experiments (FIBE) Overview

    Get PDF
    No abstract availabl
    corecore