4,725 research outputs found

    Linearity considerations in adaptive antenna array applications

    Get PDF

    Chaotic root-finding for a small class of polynomials

    Get PDF
    In this paper we present a new closed-form solution to a chaotic difference equation, yn+1=a2yn2+a1yn+a0y_{n+1} = a_2 y_{n}^2 + a_1 y_{n} + a_0 with coefficient a0=(a14)(a1+2)/(4a2)a_0 = (a_1 - 4)(a_1 + 2) / (4 a_2), and using this solution, show how corresponding exact roots to a special set of related polynomials of order 2p,pN2^p, p \in \mathbb{N} with two independent parameters can be generated, for any pp

    Prediction modelling of indoor radio propagation for the pico-cellular environment

    Get PDF

    Wireless propagation measurements in indoor multipath environments at 1.7 GHz and 60 GHz for small cell systems

    Get PDF

    The Zero-Point Field and Inertia

    Get PDF
    A brief overview is presented of the basis of the electromagnetic zero-point field in quantum physics and its representation in stochastic electrodynamics. Two approaches have led to the proposal that the inertia of matter may be explained as an electromagnetic reaction force. The first is based on the modeling of quarks and electrons as Planck oscillators and the method of Einstein and Hopf to treat the interaction of the zero-point field with such oscillators. The second approach is based on analysis of the Poynting vector of the zero-point field in accelerated reference frames. It is possible to derive both Newton's equation of motion, F=ma, and its relativistic co-variant form from Maxwell's equations as applied to the zero-point field of the quantum vacuum. This appears to account, at least in part, for the inertia of matter.Comment: 8 pages, no fig

    Regenerative Medicine: A Review of the Evolution of Autologous Chondrocyte Implantation (ACI) Therapy.

    Get PDF
    Articular cartilage is composed of chondrons within a territorial matrix surrounded by a highly organized extracellular matrix comprising collagen II fibrils, proteoglycans, glycosaminoglycans, and non-collagenous proteins. Damaged articular cartilage has a limited potential for healing and untreated defects often progress to osteoarthritis. High hopes have been pinned on regenerative medicine strategies to meet the challenge of preventing progress to late osteoarthritis. One such strategy, autologous chondrocyte implantation (ACI), was first reported in 1994 as a treatment for deep focal articular cartilage defects. ACI has since evolved to become a worldwide well-established surgical technique. For ACI, chondrocytes are harvested from the lesser weight bearing edge of the joint by arthroscopy, their numbers expanded in monolayer culture for at least four weeks, and then re-implanted in the damaged region under a natural or synthetic membrane via an open joint procedure. We consider the evolution of ACI to become an established cell therapy, its current limitations, and on-going strategies to improve its efficacy. The most promising developments involving cells and natural or synthetic biomaterials will be highlighted

    Growth, Body Composition, and Lung Function in Prepubertal Children with Cystic Fibrosis Diagnosed by Newborn Screening

    Get PDF
    Background: Children with cystic fibrosis (CF) are at risk of altered body composition (BC). Newborn screening (NBS) may lead to improved BC outcomes. We investigated BC and its relationship with lung function in prepubertal children diagnosed with CF by NBS. Secondary aims explored predictors of fat‐free mass (FFM) and lung function. / Methods: Thirty‐seven screened (non‐meconium ileus) children with CF (20 boys) born 2007–2012 had a dual‐energy x‐ray absorptiometry scan at 5–8 years to determine whole‐body (WB) and appendicular BC. Anthropometry was performed and routine spirometry recorded. Results were converted to z‐scores, height‐adjusted (fat mass index [FMI] and FFM index [FFMI]) and compared with population mean values. Predictors of forced expiratory volume in 1 second (FEV1) were assessed using linear regression. / Results: Height, body mass index (BMI), and FEV1 were within normal limits, however, weight and BC were significantly low compared with reference data (weight, P = .03; WB FMI, P = .001; WB FFMI, P = .009). Gender differences were detected, with lower appendicular BC in boys and lower weight, BMI, and BC in girls. The association between FEV1 and WB FFMI (r = 0.38; P = .02) was stronger than with BMI (r = 0.29; P = .08). WB FFMI was the only significant predictor of FEV1 in a multivariable model (95% CI, 0.11–0.99; P = .016). / Conclusion: In this NBS CF population, gender differences in growth and BC were apparent despite preserved lung function. These results support BC assessment in prepubertal children, particularly girls, with an opportunity to direct interventions to optimize FFM

    Expanding the Anti-Phl p 7 Antibody Toolkit: An Anti-Idiotype Nanobody Inhibitor.

    Get PDF
    We have previously produced a toolkit of antibodies, comprising recombinant human antibodies of all but one of the human isotypes, directed against the polcalcin family antigen Phl p 7. In this work, we complete the toolkit of human antibody isotypes with the IgD version of the anti-Phl p 7 monoclonal antibody. We also raised a set of nanobodies against the IgD anti-Phl p 7 antibody and identify and characterize one paratope-specific nanobody. This nanobody also binds to the IgE isotype of this antibody, which shares the same idiotype, and orthosterically inhibits the interaction with Phl p 7. The 2.1 Å resolution X-ray crystal structure of the nanobody in complex with the IgD Fab is described

    Crystal structures of the human IgD Fab reveal insights into CH1 domain diversity

    Get PDF
    Antibodies of the IgD isotype remain the least well characterized of the mammalian immunoglobulin isotypes. Here we report three-dimensional structures for the Fab region of IgD, based on four different crystal structures, at resolutions of 1.45–2.75 Å. These IgD Fab crystals provide the first high-resolution views of the unique Cδ1 domain. Structural comparisons identify regions of conformational diversity within the Cδ1 domain, as well as among the homologous domains of Cα1, Cγ1 and Cμ1. The IgD Fab structure also possesses a unique conformation of the upper hinge region, which may contribute to the overall disposition of the very long linker sequence between the Fab and Fc regions found in human IgD. Structural similarities observed between IgD and IgG, and differences with IgA and IgM, are consistent with predicted evolutionary relationships for the mammalian antibody isotypes
    corecore