51,325 research outputs found

    Skyrme-force time-dependent Hartree-Fock calculations with axial symmetry

    Get PDF
    We discuss axially symmetric time-dependent Hartree-Fock calculations using a finite-range modification of the Skyrme energy functional. The finite-difference forms of the coordinate-space time-dependent Hartree-Fock equations, the method of time evolution, and other numerical aspects are presented. Detailed results for (^84)Kr-induced deep-inelastic collisions with (^208)Pb at E_(lab) = 494 MeV and with (^209)Bi at E_(lab) = 600 MeV and 714 MeV are compared with experiment. [NUCLEAR REACTIONS (^84)Kr + (^208)Pb at E_lab = 494 MeV and (^84)Kr + (^209)Bi at E_1ab=600 and 714 MeV, in the time-dependent Hartree-Fock approximation. Strongy damped collisions. Details of Skyrme force calculations with axial symmetry.

    Predicting the outer membrane proteome of Pasteurella multocida based on consensus prediction enhanced by results integration and manual confirmation

    Get PDF
    Background Outer membrane proteins (OMPs) of Pasteurella multocida have various functions related to virulence and pathogenesis and represent important targets for vaccine development. Various bioinformatic algorithms can predict outer membrane localization and discriminate OMPs by structure or function. The designation of a confident prediction framework by integrating different predictors followed by consensus prediction, results integration and manual confirmation will improve the prediction of the outer membrane proteome. Results In the present study, we used 10 different predictors classified into three groups (subcellular localization, transmembrane β-barrel protein and lipoprotein predictors) to identify putative OMPs from two available P. multocida genomes: those of avian strain Pm70 and porcine non-toxigenic strain 3480. Predicted proteins in each group were filtered by optimized criteria for consensus prediction: at least two positive predictions for the subcellular localization predictors, three for the transmembrane β-barrel protein predictors and one for the lipoprotein predictors. The consensus predicted proteins were integrated from each group into a single list of proteins. We further incorporated a manual confirmation step including a public database search against PubMed and sequence analyses, e.g. sequence and structural homology, conserved motifs/domains, functional prediction, and protein-protein interactions to enhance the confidence of prediction. As a result, we were able to confidently predict 98 putative OMPs from the avian strain genome and 107 OMPs from the porcine strain genome with 83% overlap between the two genomes. Conclusions The bioinformatic framework developed in this study has increased the number of putative OMPs identified in P. multocida and allowed these OMPs to be identified with a higher degree of confidence. Our approach can be applied to investigate the outer membrane proteomes of other Gram-negative bacteria

    Work minimization accounts for footfall phasing in slow quadrupedal gaits

    Get PDF
    Quadrupeds, like most bipeds, tend to walk with an even left/right footfall timing. However, the phasing between hind and forelimbs shows considerable variation. Here, we account for this variation by modeling and explaining the influence of hind-fore limb phasing on mechanical work requirements. These mechanics account for the different strategies used by: (1) slow animals (a group including crocodile, tortoise, hippopotamus and some babies); (2) normal medium to large mammals; and (3) (with an appropriate minus sign) sloths undertaking suspended locomotion across a range of speeds. While the unusual hind-fore phasing of primates does not match global work minimizing predictions, it does approach an only slightly more costly local minimum. Phases predicted to be particularly costly have not been reported in nature

    New Cosmological Structures on Medium Angular Scales Detected with the Tenerife Experiments

    Get PDF
    We present observations at 10 and 15 GHz taken with the Tenerife experiments in a band of the sky at Dec.=+35 degrees. These experiments are sensitive to multipoles in the range l=10-30. The sensitivity per beam is 56 and 20 microK for the 10 and the 15 GHz data, respectively. After subtraction of the prediction of known radio-sources, the analysis of the data at 15 GHz at high Galactic latitude shows the presence of a signal with amplitude Delta Trms ~ 32 microK. In the case of a Harrison-Zeldovich spectrum for the primordial fluctuations, a likelihood analysis shows that this signal corresponds to a quadrupole amplitude Q_rms-ps=20.1+7.1-5.4 microK, in agreement with our previous results at Dec.+=40 degrees and with the results of the COBE DMR. There is clear evidence for the presence of individual features in the RA range 190 degrees to 250 degrees with a peak to peak amplitude of ~110 microK. A preliminary comparison between our results and COBE DMR predictions for the Tenerife experiments clearly indicates the presence of individual features common to both. The constancy in amplitude over such a large range in frequency (10-90 GHz) is strongly indicative of an intrinsic cosmological origin for these structures.Comment: ApJ Letters accepted, 13 pages Latex (uses AASTEX) and 4 encapsulated postscript figures
    • …
    corecore