57,715 research outputs found
How much does it cost? The LIFE Project - costing models for digital curation and preservation
Digital preservation is concerned with the long-term safekeeping of electronic resources. How can we be confident of their permanence, if we do not know the cost of preservation? The LIFE (Lifecycle Information
for E-Literature) Project has made a major step forward in understanding the long-term costs in this complex area. The LIFE Project has developed a methodology to model the digital lifecycle and to calculate the costs of preserving digital information for the next 5, 10 or 100 years. National and higher education (HE) libraries can now apply this process and plan effectively for the preservation of their digital collections. Based on previous work undertaken on the lifecycles of paper-based materials, the LIFE Project created a lifecycle model and applied it to real-life digital collections across a diverse subject range. Three case studies examined the everyday operations, processes and costs involved in their respective activities. The results were then used to calculate the direct costs for each element of the digital lifecycle. The Project has made major advances in costing preservation activities, as well as making detailed costs of real digital preservation activities available. The second phase of LIFE (LIFE2), which recently started, aims to refine the lifecycle methodology and to add a greater range and breadth to the project with additional exemplar case studies
The LIFE Model v1.1
Extract: This document draws together feedback, discussion and review of the LIFE Model from a number of sources:
1. The LIFE and LIFE2 Project Teams, and the staff of their institutions
2. Feedback from review by independent economics expert
3. The LIFE Project Conference
4. Early adopters of the Life Model (particularly the Royal Danish Library, State Archives and the State and University Library, Denmark)
The result is a revision of the LIFE Model which was first published in 2006 by the LIFE Project .
In line with the objectives of the LIFE2 Project, this revision aims to:
1. fix outstanding anomalies or omissions in the Model
2. scope and define the Model and its components more precisely
3. facilitate useful and repeatable mapping and costing of digital lifecycles
Lifecycle information for E-literature: an introduction to the second phase of the LIFE project
Introduction: The first phase of LIFE (Lifecycle Information For E-Literature) made a major contribution to
understanding the long-term costs of digital preservation; an essential step in helping institutions
plan for the future. The LIFE work models the digital lifecycle and calculates the costs of
preserving digital information for future years. Organisations can apply this process in order
to understand costs and plan effectively for the preservation of their digital collections
The second phase of the LIFE Project, LIFE2, has refined the LIFE Model adding three new
exemplar Case Studies to further build upon LIFE1. LIFE2 is an 18-month JISC-funded project
between UCL (University College London) and The British Library (BL), supported by the
LIBER Access and Preservation Divisions. LIFE1 was completed in April 2006. LIFE2 started
in March 2007, and was completed in August 2008.
This summary aims to give an overview of the LIFE Project, summarising some of the key outputs.
There are four main areas discussed:
1 From LIFE1 to LIFE2 outlines some of the key findings from the first phase of the project
as well as summarising the motivation behind this second phase.
2 The LIFE Model describes the current version of the model (version 2) which has been
thoroughly updated from the first phase.
3 LIFE2 Case Studies describes the three new Case Studies for LIFE2. It does not include the
results from the Case Studies (these are available in the overall LIFE2 Report), but offers
some background on each of the studies as well as discussion of why they were chosen.
4 Findings and Conclusions outlines all of the findings and outputs from the entire project
The LIFE2 final project report
Executive summary: The first phase of LIFE (Lifecycle Information For E-Literature) made a major contribution to
understanding the long-term costs of digital preservation; an essential step in helping
institutions plan for the future. The LIFE work models the digital lifecycle and calculates the
costs of preserving digital information for future years. Organisations can apply this process
in order to understand costs and plan effectively for the preservation of their digital
collections
The second phase of the LIFE Project, LIFE2, has refined the LIFE Model adding three new
exemplar Case Studies to further build upon LIFE1. LIFE2 is an 18-month JISC-funded
project between UCL (University College London) and The British Library (BL), supported
by the LIBER Access and Preservation Divisions. LIFE2 began in March 2007, and
completed in August 2008.
The LIFE approach has been validated by a full independent economic review and has
successfully produced an updated lifecycle costing model (LIFE Model v2) and digital
preservation costing model (GPM v1.1). The LIFE Model has been tested with three further
Case Studies including institutional repositories (SHERPA-LEAP), digital preservation
services (SHERPA DP) and a comparison of analogue and digital collections (British Library
Newspapers). These Case Studies were useful for scenario building and have fed back into
both the LIFE Model and the LIFE Methodology.
The experiences of implementing the Case Studies indicated that enhancements made to the
LIFE Methodology, Model and associated tools have simplified the costing process. Mapping
a specific lifecycle to the LIFE Model isn’t always a straightforward process. The revised and
more detailed Model has reduced ambiguity. The costing templates, which were refined
throughout the process of developing the Case Studies, ensure clear articulation of both
working and cost figures, and facilitate comparative analysis between different lifecycles.
The LIFE work has been successfully disseminated throughout the digital preservation and
HE communities. Early adopters of the work include the Royal Danish Library, State
Archives and the State and University Library, Denmark as well as the LIFE2 Project partners.
Furthermore, interest in the LIFE work has not been limited to these sectors, with interest in
LIFE expressed by local government, records offices, and private industry. LIFE has also
provided input into the LC-JISC Blue Ribbon Task Force on the Economic Sustainability of
Digital Preservation.
Moving forward our ability to cost the digital preservation lifecycle will require further
investment in costing tools and models. Developments in estimative models will be needed to
support planning activities, both at a collection management level and at a later preservation
planning level once a collection has been acquired. In order to support these developments a
greater volume of raw cost data will be required to inform and test new cost models. This
volume of data cannot be supported via the Case Study approach, and the LIFE team would
suggest that a software tool would provide the volume of costing data necessary to provide a
truly accurate predictive model
Predicting the outer membrane proteome of Pasteurella multocida based on consensus prediction enhanced by results integration and manual confirmation
Background
Outer membrane proteins (OMPs) of Pasteurella multocida have various functions related to virulence and pathogenesis and represent important targets for vaccine development. Various bioinformatic algorithms can predict outer membrane localization and discriminate OMPs by structure or function. The designation of a confident prediction framework by integrating different predictors followed by consensus prediction, results integration and manual confirmation will improve the prediction of the outer membrane proteome.
Results
In the present study, we used 10 different predictors classified into three groups (subcellular localization, transmembrane β-barrel protein and lipoprotein predictors) to identify putative OMPs from two available P. multocida genomes: those of avian strain Pm70 and porcine non-toxigenic strain 3480. Predicted proteins in each group were filtered by optimized criteria for consensus prediction: at least two positive predictions for the subcellular localization predictors, three for the transmembrane β-barrel protein predictors and one for the lipoprotein predictors. The consensus predicted proteins were integrated from each group into a single list of proteins. We further incorporated a manual confirmation step including a public database search against PubMed and sequence analyses, e.g. sequence and structural homology, conserved motifs/domains, functional prediction, and protein-protein interactions to enhance the confidence of prediction. As a result, we were able to confidently predict 98 putative OMPs from the avian strain genome and 107 OMPs from the porcine strain genome with 83% overlap between the two genomes.
Conclusions
The bioinformatic framework developed in this study has increased the number of putative OMPs identified in P. multocida and allowed these OMPs to be identified with a higher degree of confidence. Our approach can be applied to investigate the outer membrane proteomes of other Gram-negative bacteria
New Cosmological Structures on Medium Angular Scales Detected with the Tenerife Experiments
We present observations at 10 and 15 GHz taken with the Tenerife experiments
in a band of the sky at Dec.=+35 degrees. These experiments are sensitive to
multipoles in the range l=10-30. The sensitivity per beam is 56 and 20 microK
for the 10 and the 15 GHz data, respectively. After subtraction of the
prediction of known radio-sources, the analysis of the data at 15 GHz at high
Galactic latitude shows the presence of a signal with amplitude Delta Trms ~ 32
microK. In the case of a Harrison-Zeldovich spectrum for the primordial
fluctuations, a likelihood analysis shows that this signal corresponds to a
quadrupole amplitude Q_rms-ps=20.1+7.1-5.4 microK, in agreement with our
previous results at Dec.+=40 degrees and with the results of the COBE DMR.
There is clear evidence for the presence of individual features in the RA range
190 degrees to 250 degrees with a peak to peak amplitude of ~110 microK. A
preliminary comparison between our results and COBE DMR predictions for the
Tenerife experiments clearly indicates the presence of individual features
common to both. The constancy in amplitude over such a large range in frequency
(10-90 GHz) is strongly indicative of an intrinsic cosmological origin for
these structures.Comment: ApJ Letters accepted, 13 pages Latex (uses AASTEX) and 4 encapsulated
postscript figures
The Energy-Momentum Tensor in Fulling-Rindler Vacuum
The energy density in Fulling-Rindler vacuum, which is known to be negative
"everywhere" is shown to be positive and singular on the horizons in such a
fashion as to guarantee the positivity of the total energy. The mechanism of
compensation is displayed in detail.Comment: 9 pages, ULB-TH-15/9
Recommended from our members
Migrant workers in the East Midlands labour market 2010
This report is an update of previous intelligence (Migrant Workers in the East Midlands Labour Market 2007) on the profile and economic impact of migrant labour in the East Midlands economy
The Tenerife Cosmic Microwave Background Maps: Observations and First Analysis
The results of the Tenerife Cosmic Microwave Background (CMB) experiments are
presented. These observations cover 5000 and 6500 square degrees on the sky at
10 and 15 GHz respectively centred around Dec.~ +35 degrees. The experiments
are sensitive to multipoles l=10-30 which corresponds to the Sachs-Wolfe
plateau of the CMB power spectra. The sensitivity of the results are ~31 and
\~12 microK at 10 and 15 GHz respectively in a beam-size region (5 degrees
FWHM). The data at 15 GHz show clear detection of structure at high Galactic
latitude; the results at 10 GHz are compatible with these, but at lower
significance. A likelihood analysis of the 10 and 15 GHz data at high Galactic
latitude, assuming a flat CMB band power spectra gives a signal Delta
T_l=30+10-8 microK (68 % C.L.). Including the possible contaminating effect due
to the diffuse Galactic component, the CMB signal is Delta T_l=30+15-11 microK.
These values are highly stable against the Galactic cut chosen. Assuming a
Harrison-Zeldovich spectrum for the primordial fluctuations, the above values
imply an expected quadrupole Q_RMS-PS=20+10-7 microK which confirms previous
results from these experiments, and which are compatible with the COBE DMR.Comment: 17 pages, 7 figures. Submitted to Ap
Spin-Excitation Mechanisms in Skyrme-Force Time-Dependent Hartree-Fock
We investigate the role of odd-odd (with respect to time inversion) couplings
in the Skyrme force on collisions of light nuclei, employing a fully
three-dimensional numerical treatment without any symmetry restrictions and
with modern Skyrme functionals. We demonstrate the necessity of these couplings
to suppress spurious spin excitations owing to the spin-orbit force in free
translational motion of a nucleus but show that in a collision situation there
is a strong spin excitation even in spin-saturated systems which persists in
the departing fragments. The energy loss is considerably increased by the
odd-odd terms
- …