1,363 research outputs found

    On the Definition of Gauge Field Operators in Lattice Gauge-Fixed Theories

    Get PDF
    We address the problem of defining the gauge four-potential on the lattice, in terms of the natural link variables. Different regularized definitions are shown, through non perturbative numerical computation, to converge towards the same continuum renormalized limit.Comment: 8 pages, LaTeX2e/LaTeX209, 3 eps figure

    Development of selective, ultra-fast multiple co-sensitization to control dye loading in dye-sensitized solar cells

    Get PDF
    Enhancing the spectral response of dye-sensitized solar cells (DSC) is essential to increasing device efficiency and a key approach to achieve this is co-sensitization (i.e. the use of multiple dyes to absorb light from different parts of the solar spectrum). However, precise control of dye loading within DSC mesoporous metal oxide photo-anodes is non-trivial especially for very rapid processing (minutes). This is further complicated by dyes having very different partition (Kd) and molar extinction (Δ) coefficients which strongly influence dye uptake and spectral response, respectively. Here, we present a highly versatile, ultra-fast (ca. 5 min) desorption and re-dyeing method for dye-sensitized solar cells which can be used to precisely control dye loading in photo-electrode films. This method has been successfully applied to re-dye, partially desorb and re-dye and selectively desorb and re-dye photo-electrodes using examples of a Ru-bipy dye (N719) and also organic dyes (SQ1 and D149) giving η up to 8.1% for a device containing the organic dye D149 and re-dyed with the Ru dye N719. The paper also illustrates how this method can be used to rapidly screen large numbers of dyes (and/or dye combinations) and also illustrates how it can also be used to selectively study dye loading

    The Effect of Student-Directed Transition Planning With a Computer-Based Reading Support Program on the Self-Determination of Students With Disabilities

    Get PDF
    The purpose of this study was to investigate the impact of student-directed transition planning instruction (Whose Future Is It Anyway? curriculum) with a computer-based reading support program (Rocket Reader) on the self-determination, self-efficacy and outcome expectancy, and transition planning knowledge of students with disabilities. This study employed a pre- and postmeasure design with 168 middle school students with disabilities who were assigned to an experimental group (n = 86) and control group (n = 82). The results of the study demonstrated that self-determination, self-efficacy, and outcome expectancy for education planning improved through the application of Rocket Reader . Avenues are discussed for promoting middle school students’ self-determination in their transition planning, as are implications for future research.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    A study of dye anchoring points in half-squarylium dyes for dye-sensitized solar cells

    Get PDF
    This paper reports the synthesis of a series of new half-squaraine dyes (Hf-SQ) based around a common chromophoric unit consisting of linked indoline and squaric acid moieties. Carboxylate groups have been incorporated onto this core structure at four different points to study the influence of the anchoring group position on dye-sensitized solar cell (DSC) device performance. Dyes have been linked to TiO2 directly through the squaric acid moiety, through a modified squaric acid unit where a vinyl dicyano group has replaced one carbonyl, via an alkyl carboxylate attached to the indole N or through a carboxylate attached to the 4 position of a benzyl indole. Contact angle measurements have been studied to investigate the hydrophobic/hydrophilic properties of the dyes and the results have been compared to N719 and Z907. Full characterization data of all the dyes and synthetic intermediates are reported including single-crystal X-ray structural analysis for dye precursors; the indole (2a) and the half-squarylium esters (3a) and (6b), as well as the dyes (4c), (8) and (12). Dye colours range from yellow to red/brown in solution (λmax range from 430 to 476 nm) with Δ ranging from 38 000 to 133 100 M−1 cm−1. The performance of the dyes in DSCs shows the highest efficiency yet reported for a Hf-SQ dye (η = 5.0%) for 1 cm2 devices with a spectral response ranging from 400 to 700 nm depending on the dye substituents. Co-sensitization of half-squarylium dye (7b) with squaraine dye (SQ2) resulted in a broader spectral response and an improved device efficiency (η = 6.1%). Density functional theory (DFT) calculations and cyclic voltammetry have been used to study the influence of linker position on dye HOMO–LUMO levels and the data has been correlated with I–V and EQE data

    Fermi's golden rule and exponential decay as a RG fixed point

    Full text link
    We discuss the decay of unstable states into a quasicontinuum using models of the effective Hamiltonian type. The goal is to show that exponential decay and the golden rule are exact in a suitable scaling limit, and that there is an associated renormalization group (RG) with these properties as a fixed point. The method is inspired by a limit theorem for infinitely divisible distributions in probability theory, where there is a RG with a Cauchy distribution, i.e. a Lorentz line shape, as a fixed point. Our method of solving for the spectrum is well known; it does not involve a perturbation expansion in the interaction, and needs no assumption of a weak interaction. We use random matrices for the interaction, and show that the ensemble fluctuations vanish in the scaling limit. Thus the limit is the same for every model in the ensemble with probability one.Comment: 20 pages, 1 figur

    Interplanetary and Geomagnetic Consequences of Interacting CMEs of 13-14 June 2012

    Full text link
    We report on the kinematics of two interacting CMEs observed on 13 and 14 June 2012. Both CMEs originated from the same active region NOAA 11504. After their launches which were separated by several hours, they were observed to interact at a distance of 100 Rs from the Sun. The interaction led to a moderate geomagnetic storm at the Earth with Dst index of approximately, -86 nT. The kinematics of the two CMEs is estimated using data from the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) onboard the Solar Terrestrial Relations Observatory (STEREO). Assuming a head-on collision scenario, we find that the collision is inelastic in nature. Further, the signatures of their interaction are examined using the in situ observations obtained by Wind and the Advance Composition Explorer (ACE) spacecraft. It is also found that this interaction event led to the strongest sudden storm commencement (SSC) (approximately 150 nT) of the present Solar Cycle 24. The SSC was of long duration, approximately 20 hours. The role of interacting CMEs in enhancing the geoeffectiveness is examined.Comment: 17 pages, 5 figures, Accepted in Solar Physics Journa

    Granular discharge and clogging for tilted hoppers

    Full text link
    We measure the flux of spherical glass beads through a hole as a systematic function of both tilt angle and hole diameter, for two different size beads. The discharge increases with hole diameter in accord with the Beverloo relation for both horizontal and vertical holes, but in the latter case with a larger small-hole cutoff. For large holes the flux decreases linearly in cosine of the tilt angle, vanishing smoothly somewhat below the angle of repose. For small holes it vanishes abruptly at a smaller angle. The conditions for zero flux are discussed in the context of a {\it clogging phase diagram} of flow state vs tilt angle and ratio of hole to grain size

    Speeds and arrival times of solar transients approximated by self-similar expanding circular fronts

    Full text link
    The NASA STEREO mission opened up the possibility to forecast the arrival times, speeds and directions of solar transients from outside the Sun-Earth line. In particular, we are interested in predicting potentially geo-effective Interplanetary Coronal Mass Ejections (ICMEs) from observations of density structures at large observation angles from the Sun (with the STEREO Heliospheric Imager instrument). We contribute to this endeavor by deriving analytical formulas concerning a geometric correction for the ICME speed and arrival time for the technique introduced by Davies et al. (2012, ApJ, in press) called Self-Similar Expansion Fitting (SSEF). This model assumes that a circle propagates outward, along a plane specified by a position angle (e.g. the ecliptic), with constant angular half width (lambda). This is an extension to earlier, more simple models: Fixed-Phi-Fitting (lambda = 0 degree) and Harmonic Mean Fitting (lambda = 90 degree). This approach has the advantage that it is possible to assess clearly, in contrast to previous models, if a particular location in the heliosphere, such as a planet or spacecraft, might be expected to be hit by the ICME front. Our correction formulas are especially significant for glancing hits, where small differences in the direction greatly influence the expected speeds (up to 100-200 km/s) and arrival times (up to two days later than the apex). For very wide ICMEs (2 lambda > 120 degree), the geometric correction becomes very similar to the one derived by M\"ostl et al. (2011, ApJ, 741, id. 34) for the Harmonic Mean model. These analytic expressions can also be used for empirical or analytical models to predict the 1 AU arrival time of an ICME by correcting for effects of hits by the flank rather than the apex, if the width and direction of the ICME in a plane are known and a circular geometry of the ICME front is assumed.Comment: 15 pages, 5 figures, accepted for publication in "Solar Physics

    Predicting loneliness with polygenic scores of social, psychological and psychiatric traits

    Get PDF
    Loneliness is a heritable trait that accompanies multiple disorders. The association between loneliness and mental health indices may partly be due to inherited biological factors. We constructed polygenic scores for 27 traits related to behavior, cognition and mental health and tested their prediction for self-reported loneliness in a population-based sample of 8798 Dutch individuals. Polygenic scores for major depressive disorder (MDD), schizophrenia and bipolar disorder were significantly associated with loneliness. Of the Big Five personality dimensions, polygenic scores for neuroticism and conscientiousness also significantly predicted loneliness, as did the polygenic scores for subjective well-being, tiredness and self-rated health. When including all polygenic scores simultaneously into one model, only 2 major depression polygenic scores remained as significant predictors of loneliness. When controlling only for these 2 MDD polygenic scores, only neuroticism and schizophrenia remain significant. The total variation explained by all polygenic scores collectively was 1.7%. The association between the propensity to feel lonely and the susceptibility to psychiatric disorders thus pointed to a shared genetic etiology. The predictive power of polygenic scores will increase as the power of the genome-wide association studies on which they are based increases and may lead to clinically useful polygenic scores that can inform on the genetic predisposition to loneliness and mental health
    • 

    corecore