1,559 research outputs found

    The Herschel Virgo Cluster Survey - I. Luminosity function

    Get PDF
    We describe the Herschel Virgo Cluster Survey (HeViCS) and the first data obtained as part of the science demonstration phase (SDP). The data cover a central 4×4 sq deg region of the cluster. We use SPIRE and PACS photometry data to produce 100, 160, 250, 350 and 500 ÎŒm luminosity functions (LFs) for optically bright galaxies that are selected at 500 ÎŒm and detected in all bands. We compare these LFs with those previously derived using IRAS, BLAST and Herschel-ATLAS data. The Virgo cluster LFs do not have the large numbers of faint galaxies or examples of very luminous galaxies seen previously in surveys covering less dense environments

    Further Discoveries of 12CO in Low Surface Brightness Galaxies

    Get PDF
    Using the IRAM 30m telescope we have obtained seven new, deep CO J(1-0) and J(2-1) observations of low surface brightness (LSB) galaxies. Five of the galaxies have no CO detected to extremely low limits (0.1-0.4 K km/s at J(1-0)), while two of the galaxies, UGC 01922 and UGC 12289, have clear detections in both line transitions. When these observations are combined with all previous CO observations taken of LSB systems, we compile a total of 34 observations, in which only 3 galaxies have had detections of their molecular gas. Comparing the LSB galaxies with and without CO detections to a sample of high surface brightness (HSB) galaxies with CO observations indicates that it is primarily the low density of baryonic matter within LSB galaxies which is causing their low CO fluxes. Finally, we note that one of the massive LSB galaxies studied in this project, UGC 06968 (a Malin-1 `cousin'), has upper limits placed on both M_H2 and M_H2/M_HI which are 10-20 times lower than the lowest values found for any galaxy (LSB or HSB) with similar global properties. This may be due to an extremely low temperature and metallicity within UGC 06968, or simply due to the CO distribution within the galaxy being too diffuse to be detected by the IRAM beam.Comment: 18 pages, 8 figures, 4 tables. Accepted by Ap

    Spectrophotometric Observations of Blue Compact Dwarf Galaxies: Mrk 370

    Full text link
    We present results from a detailed spectrophotometric analysis of the blue compact dwarf galaxy (BCD) Mrk 370, based on deep UBVRI broad-band and Halpha narrow-band observations, and long-slit and two-dimensional spectroscopy of its brightest knots. The spectroscopic data are used to derive the internal extinction, and to compute metallicities, electronic density and temperature in the knots. By subtracting the contribution of the underlying older stellar population, modeled by an exponential function, removing the contribution from emission lines, and correcting for extinction, we can measure the true colors of the young star-forming knots. We show that the colors obtained this way differ significantly from those derived without the above corrections, and lead to different estimates of the ages and star-forming history of the knots. Using predictions of evolutionary synthesis models, we estimate the ages of both the starburst regions and the underlying stellar component. We found that we can reproduce the colors of all the knots with an instantaneous burst of star formation and the Salpeter initial mass function with an upper mass limit of 100 solar masses. The resulting ages range between 3 and 6 Myrs. The colors of the low surface brightness component are consistent with ages larger than 5 Gyr. The kinematic results suggest ordered motion around the major axis of the galaxy.Comment: 26 pages with 14 figures; accepted for publication in Ap

    A Deep Multicolor Survey. VI. Near-Infrared Observations, Selection Effects, and Number Counts

    Get PDF
    I present near-infrared J (1.25um), H (1.65um), and K (2.2um) imaging observations of 185 square arcminutes in 21 high galactic latitude fields. These observations reach limiting magnitudes of J ~ 21 mag, H ~ 20 mag and K ~ 18.5 mag. The detection efficiency, photometric accuracy and selection biases as a function of integrated object brightness, size, and profile shape are quantified in detail. I evaluate several popular methods for measuring the integrated light of faint galaxies and show that only aperture magnitudes provide an unbiased measure of the integrated light that is independent of apparent magnitude. These J, H, and K counts and near-infrared colors are in best agreement with passive galaxy formation models with at most a small amount of merging (for Omega_M = 0.3, Omega_Lambda = 0.7).Comment: AJ Accepted (Feb 2001). 28 pages, 7 embedded ps figures, AASTEX5. Minor changes to submitted version. Also available at http://www.astronomy.ohio-state.edu/~martini/pubs

    Empirical Models for Dark Matter Halos. III. The Kormendy relation and the log(rho_e)-log(R_e) relation

    Full text link
    We have recently shown that the 3-parameter density-profile model from Prugniel & Simien provides a better fit to simulated, galaxy- and cluster-sized, dark matter halos than an NFW-like model with arbitrary inner profile slope gamma (Paper I). By construction, the parameters of the Prugniel-Simien model equate to those of the Sersic R^{1/n} function fitted to the projected distribution. Using the Prugniel-Simien model, we are therefore able to show that the location of simulated (10^{12} M_sun) galaxy-sized dark matter halos in the _e-log(R_e) diagram coincides with that of brightest cluster galaxies, i.e., the dark matter halos appear consistent with the Kormendy relation defined by luminous elliptical galaxies. These objects are also seen to define the new, and equally strong, relation log(rho_e) = 0.5 - 2.5log(R_e), in which rho_e is the internal density at r=R_e. Simulated (10^{14.5} M_sun) cluster-sized dark matter halos and the gas component of real galaxy clusters follow the relation log(rho_e) = 2.5[1 - log(R_e)]. Given the shapes of the various density profiles, we are able to conclude that while dwarf elliptical galaxies and galaxy clusters can have dark matter halos with effective radii of comparable size to the effective radii of their baryonic component, luminous elliptical galaxies can not. For increasingly large elliptical galaxies, with increasingly large profile shapes `n', to be dark matter dominated at large radii requires dark matter halos with increasingly large effective radii compared to the effective radii of their stellar component.Comment: AJ, in press. (Paper I can be found at astro-ph/0509417

    How effective is harassment on infalling late-type dwarfs?

    Full text link
    A new harassment model is presented that models the complex, and dynamical tidal field of a Virgo like galaxy cluster. The model is applied to small, late-type dwarf disc galaxies (of substantially lower mass than in previous harassment simulations) as they infall into the cluster from the outskirts. These dwarf galaxies are only mildly affected by high speed tidal encounters with little or no observable consequences; typical stellar losses are <10%<10\%, producing very low surface brightness streams (ÎŒB>31\mu_B > 31 mag arcsec−2^{-2}), and a factor of two drop in dynamical mass-to-light ratio. Final stellar discs remain disc-like, and dominated by rotation although often with tidally induced spiral structure. By means of Monte-Carlo simulations, the statistically likely influences of harassment on infalling dwarf galaxies are determined. The effects of harassment are found to be highly dependent on the orbit of the galaxy within the cluster, such that newly accreted dwarf galaxies typically suffer only mild harassment. Strong tidal encounters, that can morphologically transform discs into spheroidals, are rare occurring in <15%<15 \% of dwarf galaxy infalls for typical orbits of sub-structure within Λ\LambdaCDM cluster mass halos. For orbits with small apocentric distances (<<250 kpc), harassment is significantly stronger resulting in complete disruption or heavy mass loss (>90%>90 \% dark matter and >50%> 50 \% stellar), however, such orbits are expected to be highly improbable for newly infalling galaxies due to the deep potential well of the cluster.Comment: 15 pages, 11 figures, 4 table

    The Low Surface Brightness Extent of the Fornax Cluster

    Get PDF
    We have used a large format CCD camera to survey the nearby Fornax cluster and its immediate environment for low luminosity low surface brightness galaxies. Recent observations indicate that these are the most dark matter dominated galaxies known and so they are likely to be a good tracer of the dark matter in clusters. We have identified large numbers of these galaxies consistent with a steep faint end slope of the luminosity function (alpha~ -2) down to MB ~ -12. These galaxies contribute almost the same amount to the total cluster light as the brighter galaxies and they have a spatial extent that is some four times larger. They satisfy two of the important predictions of N-body hierarchical simulations of structure formation using dark halos. The luminosity (mass ?) function is steep and the mass distribution is more extended than that defined by the brighter galaxies. We also find a large concentration of low surface brightness galaxies around the nearby galaxy NGC1291.Comment: 16 pages, 6 figure

    Monte Carlo Predictions of Far-Infrared Emission from Spiral Galaxies

    Get PDF
    We present simulations of Far Infrared (FIR) emission by dust in spiral galaxies, based on the Monte Carlo radiative transfer code of Bianchi, Ferrara & Giovanardi (1996). The radiative transfer is carried out at several wavelength in the Ultraviolet, optical and Near Infrared, to cover the range of the stellar Spectral Energy Distribution (SED). Together with the images of the galactic model, a map of the energy absorbed by dust is produced. Using Galactic dust properties, the spatial distribution of dust temperature is derived under the assumption of thermal equilibrium. A correction is applied for non-equilibrium emission in the Mid Infrared. Images of dust emission can then be produced at any wavelength in the FIR. We show the application of the model to the spiral galaxy NGC 6946. The observed stellar SED is used as input and models are produced for different star-dust geometries. It is found that only optically thick dust disks can reproduce the observed amount of FIR radiation. However, it is not possible to reproduce the large FIR scalelength suggested by recent observation of spirals at 200 um, even when the scalelength of the dust disk is larger than that for stars. Optically thin models have ratios of optical/FIR scalelengths closer to the 200um observations, but with smaller absolute scalelengths than optically thick cases. The modelled temperature distributions are compatible with observations of the Galaxy and other spirals. We finally discuss the approximations of the model and the impact of a clumpy stellar and dust structure on the FIR simulations.Comment: 19 pages, 6 figures, accepted by A&

    Dynamical Friction in dE Globular Cluster Systems

    Get PDF
    The dynamical friction timescale for globular clusters to sink to the center of a dwarf elliptical galaxy (dE) is significantly less than a Hubble time if the halos have King-model or isothermal profiles and the globular clusters formed with the same radial density profile as the underlying stellar population. We examine the summed radial distribution of the entire globular cluster systems and the bright globular cluster candidates in 51 Virgo and Fornax Cluster dEs for evidence of dynamical friction processes. We find that the summed distribution of the entire globular cluster population closely follows the exponential profile of the underlying stellar population. However, there is a deficit of bright clusters within the central regions of dEs (excluding the nuclei), perhaps due to the orbital decay of these massive clusters into the dE cores. We also predict the magnitude of each dE's nucleus assuming the nuclei form via dynamical friction. The observed trend of decreasing nuclear luminosity with decreasing dE luminosity is much stronger than predicted if the nuclei formed via simple dynamical friction processes. We find that the bright dE nuclei could have been formed from the merger of orbitally decayed massive clusters, but the faint nuclei are several magnitudes fainter than expected. These faint nuclei are found primarily in M_V > -14 dEs which have high globular cluster specific frequencies and extended globular cluster systems. In these galaxies, supernovae-driven winds, high central dark matter densities, extended dark matter halos, the formation of new star clusters, or tidal interactions may act to prevent dynamical friction from collapsing the entire globular cluster population into a single bright nucleus.Comment: 15 pages, 2 tables, 7 figures; to appear in the Astrophysical Journal, April 20, 200

    A Morphological-type dependence in the mu_0-log(h) plane of Spiral galaxy disks

    Get PDF
    We present observational evidence for a galaxy `Type' dependence to the location of a spiral galaxy's disk parameters in the mu_0-log(h) (central disk surface-brightness - disk scale-length) plane. With a sample of ~40 Low Surface Brightness galaxies (both bulge- and disk-dominated) and ~80 High Surface Brightness galaxies, the early-type disk galaxies (<=Sc) tend to define a bright envelope in the mu_0-log(h) plane, while the late-type (>=Scd) spiral galaxies have, in general, smaller and fainter disks. Below the defining surface brightness threshold for a Low Surface Brightness galaxy (i.e. more than 1 mag fainter than the 21.65 B-mag arcsec^(-2) Freeman value), the early-type spiral galaxies have scale-lengths greater than 8-9 kpc, while the late-type spiral galaxies have smaller scale-lengths. All galaxies have been modelled with a seeing-convolved Sersic r^(1/n) bulge and exponential disk model. We show that the trend of decreasing bulge shape parameter (n) with increasing Hubble type and decreasing bulge-to-disk luminosity ratio, which has been observed amongst the High Surface Brightness galaxies, extends to the Low Surface Brightness galaxies, revealing a continuous range of structural parameters.Comment: To be published in ApJ. Inc. three two-part figure
    • 

    corecore