204 research outputs found

    Returns Policy? What the Next Decade Holds for Social Investment

    Get PDF
    This report outlines views on the key issues affecting the social investment market in the UK over the coming decade. It argues that it is crucial that charities are not left behind as politicians and policymakers focus on a grand vision for the future in which it is possible for investors to get both social returns and commercial-rate financial returns. The main thing charities need currently is access to affordable, repayable finance.The report outlines the issues facing both the supply and demand sides of the market, and some of the challenges these present to policymakers and practitioners. It also makes recommendations for eight principles to guide policymaking on social investment, that would ensure that charities are in a position to harness the potential of this new approach to financing social causes

    Giving a Sense of Place: Philanthropy and the Future of UK Civic Identity

    Get PDF
    The Charities Aid Foundation argues that philanthropy should be a central part of the discussion about the future of cities in the UK and makes specific recommendations to usher in a new golden age of civic giving. It recommends actions to be taken by central and local government, locally elected mayors, the public sector, philanthropists and charities. These include:-The development of a clear narrative about civic philanthropy-The establishment of Local Philanthropy Partnerships-The publication of a philanthropy strategy by regionally elected mayors and-The stimulation of a wider culture of giving in cities

    Automated Analysis of Corpora Callosa

    Get PDF
    Abstract. This report describes and evaluates the steps needed to perform modern model-based interpretation of the corpus callosum in MRI. The process is discussed from the initial landmark-free contours to fullfledged statistical models based on the Active Appearance Models framework. Topics treated include landmark placement, background modelling and multi-resolution analysis. Preliminary quantitative and qualitative validation in a cross-sectional study show that fully automated analysis and segmentation of the corpus callosum are feasible.

    Good intent, or just good content? Assessing MrBeast's philanthropy

    Get PDF
    MrBeast is the world's most successful individual YouTube content creator. Having made his name with videos of high‐concept challenges and stunts, he has subsequently produced a series of viral videos centring on acts of philanthropy – drawing both praise and criticism in the process. This paper attempts to place MrBeast's approach in the context of wider historical and current debates about the nature and role of philanthropy, in order to ascertain what (if anything) is genuinely novel about it, and how we should understand it in relation to models of philanthropy that have gone before. The paper considers “Beast Philanthropy” through a range of lenses − aesthetic, ethical, economic and political − and what these can tell us about the key questions we should be asking and whether, on balance, we should view this phenomenon positively or not

    Applying multi-resolution numerical methods to geodynamics

    Get PDF
    Computational models yield inaccurate results if the underlying numerical grid fails to provide the necessary resolution to capture a simulation's important features. For the large-scale problems regularly encountered in geodynamics, inadequate grid resolution is a major concern. The majority of models involve multi-scale dynamics, being characterized by fine-scale upwelling and downwelling activity in a more passive, large-scale background flow. Such configurations, when coupled to the complex geometries involved, present a serious challenge for computational methods. Current techniques are unable to resolve localized features and, hence, such models cannot be solved efficiently. This thesis demonstrates, through a series of papers and closely-coupled appendices, how multi-resolution finite-element methods from the forefront of computational engineering can provide a means to address these issues. The problems examined achieve multi-resolution through one of two methods. In two-dimensions (2-D), automatic, unstructured mesh refinement procedures are utilized. Such methods improve the solution quality of convection dominated problems by adapting the grid automatically around regions of high solution gradient, yielding enhanced resolution of the associated flow features. Thermal and thermo-chemical validation tests illustrate that the technique is robust and highly successful, improving solution accuracy whilst increasing computational efficiency. These points are reinforced when the technique is applied to geophysical simulations of mid-ocean ridge and subduction zone magmatism. To date, successful goal-orientated/error-guided grid adaptation techniques have not been utilized within the field of geodynamics. The work included herein is therefore the first geodynamical application of such methods. In view of the existing three-dimensional (3-D) spherical mantle dynamics codes, which are built upon a quasi-uniform discretization of the sphere and closely coupled structured grid solution strategies, the unstructured techniques utilized in 2-D would throw away the regular grid and, with it, the major benefits of the current solution algorithms. Alternative avenues towards multi-resolution must therefore be sought. A non-uniform structured method that produces similar advantages to unstructured grids is introduced here, in the context of the pre-existing 3-D spherical mantle dynamics code, TERRA. The method, based upon the multigrid refinement techniques employed in the field of computational engineering, is used to refine and solve on a radially non-uniform grid. It maintains the key benefits of TERRA's current configuration, whilst also overcoming many of its limitations. Highly efficient solutions to non-uniform problems are obtained. The scheme is highly resourceful in terms RAM, meaning that one can attempt calculations that would otherwise be impractical. In addition, the solution algorithm reduces the CPU-time needed to solve a given problem. Validation tests illustrate that the approach is accurate and robust. Furthermore, by being conceptually simple and straightforward to implement, the method negates the need to reformulate large sections of code. The technique is applied to highly advanced 3-D spherical mantle convection models. Due to its resourcefulness in terms of RAM, the modified code allows one to efficiently resolve thermal boundary layers at the dynamical regime of Earth's mantle. The simulations presented are therefore at superior vigor to the highest attained, to date, in 3-D spherical geometry, achieving Rayleigh numbers of order 109. Upwelling structures are examined, focussing upon the nature of deep mantle plumes. Previous studies have shown long-lived, anchored, coherent upwelling plumes to be a feature of low to moderate vigor convection. Since more vigorous convection traditionally shows greater time-dependence, the fixity of upwellings would not logically be expected for non-layered convection at higher vigors. However, such configurations have recently been observed. With hot-spots widely-regarded as the surface expression of deep mantle plumes, it is of great importance to ascertain whether or not these conclusions are valid at the dynamical regime of Earth's mantle. Results demonstrate that at these high vigors, steady plumes do arise. However, they do not dominate the planform as in lower vigor cases: they coexist with mobile and ephemeral plumes and display ranging characteristics, which are consistent with hot-spot observations on Earth. Those plumes that do remain steady alter in intensity throughout the simulation, strengthening and weakening over time. Such behavior is caused by an irregular supply of cold material to the core-mantle boundary region, suggesting that subducting slabs are partially responsible for episodic plume magmatism on Earth. With this in mind, the influence of the upper boundary condition upon the planform of mantle convection is further examined. With the modified code, the CPU-time needed to solve a given problem is reduced and, hence, several simulations can be run efficiently, allowing a relatively rapid parameter space mapping of various upper boundary conditions. Results, in accordance with the investigations on upwelling structures, demonstrate that the surface exerts a profound control upon internal dynamics, manifesting itself not only in convective structures, but also in thermal profiles, Nusselt numbers and velocity patterns. Since the majority of geodynamical simulations incorporate a surface condition that is not at all representative of Earth, this is a worrying, yet important conclusion. By failing to address the surface appropriately, geodynamical models, regardless of their sophistication, cannot be truly applicable to Earth. In summary, the techniques developed herein, in both 2- and 3-D, are extremely practical and highly efficient, yielding significant advantages for geodynamical simulations. Indeed, they allow one to solve problems that would otherwise be unfeasible.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Thermally-driven mantle plumes reconcile multiple hot-spot observations

    Get PDF
    Hot-spots are anomalous regions of magmatism that cannot be directly associated with plate tectonic processes. They are widely-regarded as the surface expression of upwelling mantle plumes. Hot-spots exhibit variable life-spans, magmatic productivity and fixity. This suggests that a wide-range of upwelling structures coexist within Earth's mantle, a view supported by geochemical and seismic evidence, but, thus far, not fully-reproduced by numerical models. Here, results from a new, global, 3-D spherical, mantle convection model are presented, which better reconcile hot-spot observations, the key modification from previous models being increased convective vigor. Model upwellings show broad-ranging dynamics; some drift slowly, while others are more mobile, displaying variable life-spans, intensities and migration velocities. Such behavior is consistent with hot-spot observations, indicating that the mantle must be simulated at the correct vigor and in the appropriate geometry to reproduce Earth-like dynamics. Thermally-driven mantle plumes can explain the principal features of hot-spot volcanism on Earth

    Applying multi-resolution numerical methods to geodynamics

    Get PDF
    Computational models yield inaccurate results if the underlying numerical grid fails to provide the necessary resolution to capture a simulation's important features. For the large-scale problems regularly encountered in geodynamics, inadequate grid resolution is a major concern. The majority of models involve multi-scale dynamics, being characterized by fine-scale upwelling and downwelling activity in a more passive, large-scale background flow. Such configurations, when coupled to the complex geometries involved, present a serious challenge for computational methods. Current techniques are unable to resolve localized features and, hence, such models cannot be solved efficiently. This thesis demonstrates, through a series of papers and closely-coupled appendices, how multi-resolution finite-element methods from the forefront of computational engineering can provide a means to address these issues. The problems examined achieve multi-resolution through one of two methods. In two-dimensions (2-D), automatic, unstructured mesh refinement procedures are utilized. Such methods improve the solution quality of convection dominated problems by adapting the grid automatically around regions of high solution gradient, yielding enhanced resolution of the associated flow features. Thermal and thermo-chemical validation tests illustrate that the technique is robust and highly successful, improving solution accuracy whilst increasing computational efficiency. These points are reinforced when the technique is applied to geophysical simulations of mid-ocean ridge and subduction zone magmatism. To date, successful goal-orientated/error-guided grid adaptation techniques have not been utilized within the field of geodynamics. The work included herein is therefore the first geodynamical application of such methods. In view of the existing three-dimensional (3-D) spherical mantle dynamics codes, which are built upon a quasi-uniform discretization of the sphere and closely coupled structured grid solution strategies, the unstructured techniques utilized in 2-D would throw away the regular grid and, with it, the major benefits of the current solution algorithms. Alternative avenues towards multi-resolution must therefore be sought. A non-uniform structured method that produces similar advantages to unstructured grids is introduced here, in the context of the pre-existing 3-D spherical mantle dynamics code, TERRA. The method, based upon the multigrid refinement techniques employed in the field of computational engineering, is used to refine and solve on a radially non-uniform grid. It maintains the key benefits of TERRA's current configuration, whilst also overcoming many of its limitations. Highly efficient solutions to non-uniform problems are obtained. The scheme is highly resourceful in terms RAM, meaning that one can attempt calculations that would otherwise be impractical. In addition, the solution algorithm reduces the CPU-time needed to solve a given problem. Validation tests illustrate that the approach is accurate and robust. Furthermore, by being conceptually simple and straightforward to implement, the method negates the need to reformulate large sections of code. The technique is applied to highly advanced 3-D spherical mantle convection models. Due to its resourcefulness in terms of RAM, the modified code allows one to efficiently resolve thermal boundary layers at the dynamical regime of Earth's mantle. The simulations presented are therefore at superior vigor to the highest attained, to date, in 3-D spherical geometry, achieving Rayleigh numbers of order 109. Upwelling structures are examined, focussing upon the nature of deep mantle plumes. Previous studies have shown long-lived, anchored, coherent upwelling plumes to be a feature of low to moderate vigor convection. Since more vigorous convection traditionally shows greater time-dependence, the fixity of upwellings would not logically be expected for non-layered convection at higher vigors. However, such configurations have recently been observed. With hot-spots widely-regarded as the surface expression of deep mantle plumes, it is of great importance to ascertain whether or not these conclusions are valid at the dynamical regime of Earth's mantle. Results demonstrate that at these high vigors, steady plumes do arise. However, they do not dominate the planform as in lower vigor cases: they coexist with mobile and ephemeral plumes and display ranging characteristics, which are consistent with hot-spot observations on Earth. Those plumes that do remain steady alter in intensity throughout the simulation, strengthening and weakening over time. Such behavior is caused by an irregular supply of cold material to the core-mantle boundary region, suggesting that subducting slabs are partially responsible for episodic plume magmatism on Earth. With this in mind, the influence of the upper boundary condition upon the planform of mantle convection is further examined. With the modified code, the CPU-time needed to solve a given problem is reduced and, hence, several simulations can be run efficiently, allowing a relatively rapid parameter space mapping of various upper boundary conditions. Results, in accordance with the investigations on upwelling structures, demonstrate that the surface exerts a profound control upon internal dynamics, manifesting itself not only in convective structures, but also in thermal profiles, Nusselt numbers and velocity patterns. Since the majority of geodynamical simulations incorporate a surface condition that is not at all representative of Earth, this is a worrying, yet important conclusion. By failing to address the surface appropriately, geodynamical models, regardless of their sophistication, cannot be truly applicable to Earth. In summary, the techniques developed herein, in both 2- and 3-D, are extremely practical and highly efficient, yielding significant advantages for geodynamical simulations. Indeed, they allow one to solve problems that would otherwise be unfeasible

    A hierarchical mesh refinement technique for global 3-D spherical mantle convection modelling

    No full text
    A method for incorporating multi-resolution capabilities within pre-existing global 3-D spherical mantle convection codes is presented. The method, which we term "geometric multigrid refinement", is based upon the application of a multigrid solver on non
    corecore