2,655 research outputs found

    Pharmacologic Activities of 3’-Hydroxypterostilbene: Cytotoxic, Anti- Oxidant, Anti-Adipogenic, Anti-Inflammatory, Histone Deacetylase and Sirtuin 1 Inhibitory Activity

    Get PDF
    Purpose: Delineate the selected pharmacodynamics of a naturally occurring stilbene 3’- Hydroxypterostilbene. Objective: Characterize for the first time the pharmacodynamics bioactivity in several in-vitro assays with relevant roles in heart disease, inflammation, cancer, and diabetes etiology and pathophysiology. Methods: 3’-Hydroxypterostilbene was studied in in-vitro assays to identify possible bioactivity. Results: 3’-Hydroxypterostilbene demonstrated anti-oxidant, anti-inflammatory, cytotoxic, antiadipogenic, histone deacetylase, and sirtuin-1 inhibitory activity. Conclusions: The importance of understanding individual stilbene pharmacologic activities were delineated. Small changes in chemical structure of stilbene compounds result in significant pharmacodynamic differences

    Understanding the Hysteresis Loop Conundrum in Pharmacokinetic / Pharmacodynamic Relationships

    Get PDF
    This is the published version. Copyright 2014 Canadian Society for Pharmaceutical SciencesHysteresis loops are phenomena that sometimes are encountered in the analysis of pharmacokinetic and pharmacodynamic relationships spanning from pre-clinical to clinical studies. When hysteresis occurs it provides insight into the complexity of drug action and disposition that can be encountered. Hysteresis loops suggest that the relationship between drug concentration and the effect being measured is not a simple direct relationship, but may have an inherent time delay and disequilibrium, which may be the result of metabolites, the consequence of changes in pharmacodynamics or the use of a non-specific assay or may involve an indirect relationship. Counter-clockwise hysteresis has been generally defined as the process in which effect can increase with time for a given drug concentration, while in the case of clockwise hysteresis the measured effect decreases with time for a given drug concentration. Hysteresis loops can occur as a consequence of a number of different pharmacokinetic and pharmacodynamic mechanisms including tolerance, distributional delay, feedback regulation, input and output rate changes, agonistic or antagonistic active metabolites, uptake into active site, slow receptor kinetics, delayed or modified activity, time-dependent protein binding and the use of racemic drugs among other factors. In this review, each of these various causes of hysteresis loops are discussed, with incorporation of relevant examples of drugs demonstrating these relationships for illustrative purposes. Furthermore, the effect that pharmaceutical formulation has on the occurrence and potential change in direction of the hysteresis loop, and the major pharmacokinetic / pharmacodynamic modeling approaches utilized to collapse and model hysteresis are detailed

    CD44-Tropic Polymeric Nanocarrier for Breast Cancer Targeted Rapamycin Chemotherapy

    Get PDF
    In contrast with the conventional targeting of nanoparticles to cancer cells with antibody or peptide conjugates, a hyaluronic acid (HA) matrix nanoparticle with intrinsic-CD44-tropism was developed to deliver rapamycin for localized CD44-positive breast cancer treatment. Rapamycin was chemically conjugated to the particle surface via a novel sustained-release linker, 3-amino-4-methoxy-benzoic acid. The release of the drug from the HA nanoparticle was improved by 42-fold compared to HA-temsirolimus in buffered saline. In CD44 positive MDA-MB-468 cells, using HA as drug delivery carrier, the cell-viability was significantly decreased compared to free rapamycin and CD44-blocked controls. Rat pharmacokinetics showed that the area-under-the-curve of HA nanoparticle formulation was 2.96-fold greater than that of the free drug, and the concomitant total body clearance was 8.82-fold slower. Moreover, in immunocompetent BALB/c mice bearing CD44-positive 4T1.2neu breast cancer, the rapamycin1loaded HA particles significantly improved animal survival, suppressed tumor growth and reduced the prevalence of lung metastasis

    Pharmacokinetics and Disposition of a Localized Lymphatic Polymeric Hyaluronan Conjugate of Cisplatin in Rodents

    Get PDF
    Cisplatin (CDDP) is an effective anticancer agent for many solid tumors but has significant systemic toxicity limiting its use in many patients. We have designed a loco-regional delivery system to increase platinum levels in the lymphatics, where early metastasis is most likely to occur, while reducing systemic toxicities. CDDP was conjugated to a biocompatible polymer hyaluronan (HA), with a conjugation degree of approximately 20% (w/w). Conjugates were delivered via subcutaneous injection into the mammary fat pad of rats. Intravenous hyaluronan–cisplatin (HA–Pt) exhibited an increased plasma area under the curve (AUC) 2.7-fold compared to conventional CDDP but with a reduced peak plasma level (Cmax), and HA–Pt increased the ipsilateral lymph node AUC by 3.8-fold compared to CDDP. Urine creatinine was unchanged over 30 days following dosing of HA–Pt. This study demonstrates that intralymphatic drug delivery with polymer-conjugated platinum may provide greater tissue and systemic plasma concentrations of platinum than intravenous CDDP. In addition, localized particle delivery augmented distribution in the loco-regional tissue basin where tumor burden predominates, while renal toxicity compared to standard intravenous CDDP was significantly reduced

    A Cremophor-Free Formulation for Tanespimycin (17-AAG) using PEO-b-PDLLA Micelles: Characterization and Pharmacokinetics in Rats

    Get PDF
    Tanespimycin (17-allylamino-17-demethoxygeldanamycin or 17-AAG) is a promising heat shock protein 90 inhibitor currently undergoing clinical trials for the treatment of cancer. Despite its selective mechanism of action on cancer cells, 17-AAG faces challenging issues due to its poor aqueous solubility, requiring formulation with Cremophor EL (CrEL) or ethanol (EtOH). Therefore, a CrEL-free formulation of 17-AAG was prepared using amphiphilic diblock micelles of poly(ethylene oxide)-b-poly(D,L-lactide) (PEO-b-PDLLA). Dynamic light scattering revealed PEO-b-PDLLA (12:6 kDa) micelles with average sizes of 257 nm and critical micelle concentrations of 350 nM, solubilizing up to 1.5 mg/mL of 17-AAG. The area under the curve (AUC) of PEO-b-PDLLA micelles was 1.3-fold that of the standard formulation. The renal clearance (CLrenal) increased and the hepatic clearance (CLhepatic) decreased with the micelle formulation, as compared to the standard vehicle. The micellar formulation showed a 1.3-fold increase in the half-life (t1/2) of the drug in serum and 1.2-fold increase in t1/2 of urine. As expected, because it circulated longer in the blood, we also observed a 1.7-fold increase in the volume of distribution (Vd) with this micelle formulation compared to the standard formulation. Overall, the new formulation of 17-AAG in PEO-b-PDLLA (12:6 kDa) micelles resulted in a favorable 150-fold increase in solubility over 17-AAG alone, while retaining similar properties to the standard formulation. Our data indicates that the nanocarrier system can retain the pharmacokinetic disposition of 17-AAG without the need for toxic agents such as CrEL and EtOH

    Pulmonary delivery of cisplatin-hyaluronan conjugates via endotracheal instillation for the treatment of lung cancer

    Get PDF
    Cisplatin (CDDP) intravenous treatments suffer several dose-limiting toxicity issues. Hyaluronan (HA), a naturally occurring biopolymer in the interstitium, is primarily cleared by the lymphatic system. An alteration in input rate and administration route through pulmonary delivery of hyaluronan-cisplatin conjugate (HA-Pt) may increase local lung CDDP concentrations and decrease systemic toxicity. Sprague-Dawley rats were split into four groups: i.v. CDDP (3.5 mg/kg), i.v. HA-Pt conjugate (3.5 mg/kg equivalent CDDP), lung instillation CDDP and lung instillation HA-Pt conjugate. Total platinum level in the lungs of the HA-Pt lung instillation group was 5.7-fold and 1.2-fold higher than the CDDP intravenous group at 24 h and 96 h, respectively. A 1.1-fold increase of Pt accumulation in lung draining nodes for the HA-Pt lung instillation group was achieved at 24 h relative to the CDDP i.v. group. In the brain and kidneys, the CDDP i.v. group had higher tissue/plasma ratios compared to the HA-Pt lung instillation group. Augmented tissue distribution from CDDP i.v. could translate into enhanced tissue toxicity compared to the altered input rate and distribution of the intrapulmonary nanoformulation. In conclusion, a local pulmonary CDDP delivery system was developed with increased platinum concentration in the lungs and draining nodes compared to i.v. therapy

    Study of strawberry flavored milk under pulsed electric field processing

    Get PDF
    Few studies exist on flavored milk processed by pulsed electric fields (PEF). The main concern is product stability. This study aimed to analyze the degradation of coloring agent Allura Red in strawberry milk under PEF. Four systems were tested containing Allura Red: two commercial milks and two model systems. PEF conditions were 40 kV/cm, 48 pulses (2.5 μs), and 55 °C; coloring agent was quantified via RP-HPLC. After processing, only minor changes were observed in color, Allura Red concentration, and pH. During storage (32 d) at refrigerated conditions (4 °C) commercial samples maintained pH above 6. Model systems dropped below pH 6 after 10 days of storage. Color of samples showed important decrease in a⁎; hue angle and chroma changed during storage. HPLC analysis reported a bi-phasic effect in Allura Red concentrations versus time. Concentration changed, reaching a maximum value during the middle of storage, possibly attributed to microbial growth, pH reduction, or interaction of proteins. However, PEF affected the stability of Allura Red in milk when additional ingredients were not added to the product

    Study of strawberry flavored milk under pulsed electric field processing

    Get PDF
    Few studies exist on flavored milk processed by pulsed electric fields (PEF). The main concern is product stability. This study aimed to analyze the degradation of coloring agent Allura Red in strawberry milk under PEF. Four systems were tested containing Allura Red: two commercial milks and two model systems. PEF conditions were 40 kV/cm, 48 pulses (2.5 μs), and 55 °C; coloring agent was quantified via RP-HPLC. After processing, only minor changes were observed in color, Allura Red concentration, and pH. During storage (32 d) at refrigerated conditions (4 °C) commercial samples maintained pH above 6. Model systems dropped below pH 6 after 10 days of storage. Color of samples showed important decrease in a⁎; hue angle and chroma changed during storage. HPLC analysis reported a bi-phasic effect in Allura Red concentrations versus time. Concentration changed, reaching a maximum value during the middle of storage, possibly attributed to microbial growth, pH reduction, or interaction of proteins. However, PEF affected the stability of Allura Red in milk when additional ingredients were not added to the product

    DOX-Vit D, a Novel Doxorubicin Delivery Approach, Inhibits Human Osteosarcoma Cell Proliferation by Inducing Apoptosis While Inhibiting Akt and mTOR Signaling Pathways

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Doxorubicin (DOX) is a very potent and effective anticancer agent. However, the effectiveness of DOX in osteosarcoma is usually limited by the acquired drug resistance. Recently, Vitamin D (Vit-D) was shown to suppress the growth of many human cancer cells. Taken together, we synthesized DOX-Vit D by conjugating Vit-D to DOX in order to increase the delivery of DOX into cancer cells and mitigate the chemoresistance associated with DOX. For this purpose, MG63 cells were treated with 10 µM DOX or DOX-Vit D for 24 h. Thereafter, MTT, real-time PCR and western blot analysis were used to determine cell proliferation, genes and proteins expression, respectively. Our results showed that DOX-Vit D, but not DOX, significantly elicited an apoptotic signal in MG63 cells as evidenced by induction of death receptor, Caspase-3 and BCLxs genes. Mechanistically, the DOX-Vit D-induced apoptogens were credited to the activation of p-JNK and p-p38 signaling pathway and the inhibition of proliferative proteins, p-Akt and p-mTOR. Our findings propose that DOX-Vit D suppressed the growth of MG63 cells by inducing apoptosis while inhibiting cell survival and proliferative signaling pathways. DOX-Vit D may serve as a novel drug delivery approach to potentiate the delivery of DOX into cancer cells.Canadian Institutes of Health Research [Grant 106665]U.S. National Cancer Institute [Grant R01CA173292

    Vorinostat with Sustained Exposure and High Solubility in Poly(ethylene glycol)-b-poly(DL-lactic acid) Micelle Nanocarriers: Characterization and Effects on Pharmacokinetics in Rat Serum and Urine

    Get PDF
    The histone deacetylase inhibitor suberoylanilide hydroxamic acid, known as vorinostat, is a promising anti-cancer drug with a unique mode of action; however, it is plagued by low water solubility, low permeability, and suboptimal pharmacokinetics. In this study, poly(ethylene glycol)-b-poly(DL-lactic acid) (PEG-b-PLA) micelles of vorinostat were developed. Vorinostat’s pharmacokinetics in rats were investigated after intravenous (i.v.) (10 mg/kg) and oral (50 mg/kg) micellar administrations and compared to a conventional PEG400 solution and methylcellulose suspension. The micelles increased the aqueous solubility of vorinostat from 0.2 mg/ml to 8.15 ± 0.60 mg/ml and 10.24 ± 0.92 mg/ml at drug to nanocarrier ratios of 1:10 and 1:15, respectively. Micelles had nanoscopic mean diameters of 75.67 ± 7.57 nm and 87.33 ± 8.62 nm for 1:10 and 1:15 micelles, respectively, with drug loading capacities of 9.93 ± 0.21% and 6.91 ± 1.19 %, and encapsulation efficiencies of 42.74 ± 1.67% and 73.29 ± 4.78%, respectively. The micelles provided sustained exposure and improved pharmacokinetics characterized by a significant increase in serum half-life, area under curve, and mean residence time. The micelles reduced vorinostat clearance particularly after i.v. dosing. Thus, PEG-b-PLA micelles significantly improved the oral and intravenous pharmacokinetics and bioavailability of vorinostat, which warrants further investigation
    corecore